Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
RSC Adv ; 14(21): 15155-15166, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38725563

RESUMO

Monolithic adsorbent removal of fluoride from water is considered an effective and non-secondary pollution method. Here, a portable hydroxyl-functionalized coal gangue-based cordierite porous ceramic sheet (ACGC-Fe) is prepared by using coal gangue solid waste with a specific silicon-aluminum-rich composition ratio and a small amount of magnesium oxide as a raw material through powder compression molding and mild chemical modification. The prepared ACGC-Fe can be used to treat fluorine-containing wastewater and the maximum adsorption of fluorine can reach 18.69 mg g-1. The Langmuir (Freundlich) adsorption isotherm model and pseudo-second-order kinetic model here provided a satisfactory description of the fluoride removal operating mechanism, and it is confirmed that the adsorption mechanism of ACGC-Fe is mainly attributed to the chemisorption of hydrogen bonds (with hydroxyl group) and ionic bonds (with metal), and physical adsorption based on cordierite porous ceramic pores. This research will provide a new idea for designing high-performance materials by mining and analyzing the composition and structure characteristics of coal gangue solid waste itself and broaden the application range of high-value-added coal gangue solid waste.

2.
Nat Commun ; 15(1): 2984, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582903

RESUMO

Metamaterials composed of different geometrical primitives have different properties. Corresponding to the fundamental geometrical forms of line, plane, and surface, beam-, plate-, and shell-based lattice metamaterials enjoy many advantages in many aspects, respectively. To fully exploit the advantages of each structural archetype, we propose a multilayer strategy and topology optimization technique to design lattice metamaterial in this study. Under the frame of the multilayer strategy, the design space is enlarged and diversified, and the design freedom is increased. Topology optimization is applied to explore better designs in the larger and diverse design space. Beam-plate-shell-combined metamaterials automatically emerge from the optimization to achieve ultrahigh stiffness. Benefiting from high stiffness, energy absorption performances of optimized results also demonstrate substantial improvements under large geometrical deformation. The multilayer strategy and topology optimization can also bring a series of tunable dimensions for lattice design, which helps achieve desired mechanical properties, such as isotropic elasticity and functionally grading material property, and superior performances in acoustic tuning, electrostatic shielding, and fluid field tuning. We envision that a broad array of synthetic and composite metamaterials with unprecedented performance can be designed with the multilayer strategy and topology optimization.

3.
Front Plant Sci ; 15: 1369650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628361

RESUMO

Powdery mildew disease (PMD) is caused by the obligate biotrophic fungus Microsphaera diffusa Cooke & Peck (M. diffusa) and results in significant yield losses in soybean (Glycine max (L.) Merr.) crops. By identifying disease-resistant genes and breeding soybean accessions with enhanced resistance, we can effectively mitigate the detrimental impact of PMD on soybeans. We analyzed PMD resistance in a diversity panel of 315 soybean accessions in two locations over 3 years, and candidate genes associated with PMD resistance were identified through genome-wide association studies (GWAS), haplotype analysis, qRT-PCR, and EMS mutant analysis. Based on the GWAS approach, we identified a region on chromosome 16 (Chr16) in which 21 genes form a gene cluster that is highly correlated with PMD resistance. In order to validate and refine these findings, we conducted haplotype analysis of 21 candidate genes and indicated there are single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels) variations of Glyma.16G214000, Glyma.16G214200, Glyma.16G215100 and Glyma.16G215300 within the coding and promoter regions that exhibit a strong association with resistance against PMD. Subsequent structural analysis of candidate genes within this cluster revealed that in 315 accessions, the majority of accessions exhibited resistance to PMD when Glyma.16G214300, Glyma.16G214800 and Glyma.16G215000 were complete; however, they demonstrated susceptibility to PMD when these genes were incomplete. Quantitative real-time PCR assays (qRT-PCR) of possible candidate genes showed that 14 candidate genes (Glyma.16G213700, Glyma.16G213800, Glyma.16G213900, Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214500, Glyma.16G214585, Glyma.16G214669, Glyma.16G214700, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300) were involved in PMD resistance. Finally, we evaluated the PMD resistance of mutant lines from the Williams 82 EMS mutations library, which revealed that mutants of Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300, exhibited sensitivity to PMD. Combined with the analysis results of GWAS, haplotypes, qRT-PCR and mutants, the genes Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300 were identified as highly correlated with PMD resistance. The candidate genes identified above are all NLR family genes, and these discoveries deepen our understanding of the molecular basis of PMD resistance in soybeans and will be useful for guiding breeding strategies.

4.
IEEE Trans Image Process ; 33: 1361-1374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335088

RESUMO

While the wisdom of training an image dehazing model on synthetic hazy data can alleviate the difficulty of collecting real-world hazy/clean image pairs, it brings the well-known domain shift problem. From a different yet new perspective, this paper explores contrastive learning with an adversarial training effort to leverage unpaired real-world hazy and clean images, thus alleviating the domain shift problem and enhancing the network's generalization ability in real-world scenarios. We propose an effective unsupervised contrastive learning paradigm for image dehazing, dubbed UCL-Dehaze. Unpaired real-world clean and hazy images are easily captured, and will serve as the important positive and negative samples respectively when training our UCL-Dehaze network. To train the network more effectively, we formulate a new self-contrastive perceptual loss function, which encourages the restored images to approach the positive samples and keep away from the negative samples in the embedding space. Besides the overall network architecture of UCL-Dehaze, adversarial training is utilized to align the distributions between the positive samples and the dehazed images. Compared with recent image dehazing works, UCL-Dehaze does not require paired data during training and utilizes unpaired positive/negative data to better enhance the dehazing performance. We conduct comprehensive experiments to evaluate our UCL-Dehaze and demonstrate its superiority over the state-of-the-arts, even only 1,800 unpaired real-world images are used to train our network. Source code is publicly available at https://github.com/yz-wang/UCL-Dehaze.

5.
ACS Appl Mater Interfaces ; 16(8): 10468-10474, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359417

RESUMO

The development of efficient technology for natural gas separation in industrial processes has become imperative. In this regard, the exploration of novel and effective adsorbents has gained significant attention. One promising approach is the metal regulation of metal-organic frameworks (MOFs), particularly heterometallic MOFs, which offer greater potential for gas separation due to their diverse composition. This study presents the synthesis of a series of iron- and vanadium-based heterometallic MOFs (MIL-126), featuring interpenetrated structures, and investigates their adsorption performance for methane (CH4), ethane (C2H6), and propane (C3H8). Experimental results reveal that the choice of metal combinations within the MOF framework significantly influences the adsorption performance of MIL-126. Notably, heterometallic MIL-126(Fe/Ni) exhibits a stronger binding affinity for C3H8, with an impressive uptake of 177 cm3/g. The C3H8/CH4 ideal adsorbed solution theory selectivity of MIL-126(Fe/Ni) surpasses that of MIL-126(Fe) by a factor of 7, reaching a value of 853, second only to the highest reported value. Furthermore, MIL-126(Fe/Ni) exhibits remarkable potential for the recovery of pure CH4 from the equimolar C3H8/CH4 mixture, with the amount of pure CH4 approaching the maximum reported value for MOFs. Insights from isosteric heat at zero loading and Henry's coefficients indicate that the transformation of metal types leads to a change in the interaction energy between C3H8 and the framework. Furthermore, breakthrough experiments validate the effective separation capability of MIL-126(Fe/Ni) for CH4/C2H6/C3H8 mixtures. These findings underscore the remarkable potential of heterometallic MOFs in constructing a wide range of new MOFs with tailorable properties, thereby enhancing their gas separation performance.

6.
Food Chem ; 441: 138259, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38185047

RESUMO

This study aimed to investigate the cryoprotective properties of proline (1% and 3% (w/v)) on shrimp. The cryoprotective mechanism was studied using physico-chemical experiments and molecular simulations. Proline had a notable positive impact on the thawing loss and texture of shrimp in comparison to the control. The denaturation of myosin in frozen shrimp was delayed by proline. Microscopy analysis demonstrated that proline effectively lowered the harm caused by ice crystals to shrimp muscle. Molecular simulations indicated that proline potentially exerted a cryoprotective effect primarily through the "water substitution" and "glassy state" hypotheses. Proline formed hydrogen bonds with myosin to replace the water molecules around myosin. Additionally, proline interacted with water molecules to form a glassy state, impeding the growth of ice crystals. Consequently, the stability of shrimp myosin was enhanced during freezing. In conclusion, proline demonstrated promise as an efficacious cryoprotectant for aquatic products.


Assuntos
Gelo , Penaeidae , Animais , Congelamento , Gelo/análise , Prolina , Crioprotetores/farmacologia , Água/farmacologia , Miosinas , Penaeidae/química
7.
Acta Pharmacol Sin ; 45(3): 517-530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880339

RESUMO

Malignant ventricular arrhythmia (VA) after myocardial infarction (MI) is mainly caused by myocardial electrophysiological remodeling. Brahma-related gene 1 (BRG1) is an ATPase catalytic subunit that belongs to a family of chromatin remodeling complexes called Switch/Sucrose Non-Fermentable Chromatin (SWI/SNF). BRG1 has been reported as a molecular chaperone, interacting with various transcription factors or proteins to regulate transcription in cardiac diseases. In this study, we investigated the potential role of BRG1 in ion channel remodeling and VA after ischemic infarction. Myocardial infarction (MI) mice were established by ligating the left anterior descending (LAD) coronary artery, and electrocardiogram (ECG) was monitored. Epicardial conduction of MI mouse heart was characterized in Langendorff-perfused hearts using epicardial optical voltage mapping. Patch-clamping analysis was conducted in single ventricular cardiomyocytes isolated from the mice. We showed that BRG1 expression in the border zone was progressively increased in the first week following MI. Cardiac-specific deletion of BRG1 by tail vein injection of AAV9-BRG1-shRNA significantly ameliorated susceptibility to electrical-induced VA and shortened QTc intervals in MI mice. BRG1 knockdown significantly enhanced conduction velocity (CV) and reversed the prolonged action potential duration in MI mouse heart. Moreover, BRG1 knockdown improved the decreased densities of Na+ current (INa) and transient outward potassium current (Ito), as well as the expression of Nav1.5 and Kv4.3 in the border zone of MI mouse hearts and in hypoxia-treated neonatal mouse ventricular cardiomyocytes. We revealed that MI increased the binding among BRG1, T-cell factor 4 (TCF4) and ß-catenin, forming a transcription complex, which suppressed the transcription activity of SCN5A and KCND3, thereby influencing the incidence of VA post-MI.


Assuntos
Infarto do Miocárdio , Camundongos , Animais , Infarto do Miocárdio/metabolismo , Arritmias Cardíacas/genética , Miocárdio/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Miócitos Cardíacos/metabolismo
8.
ACS Omega ; 8(50): 47452-47462, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144054

RESUMO

The aim of this study was to fulfill the NOx emissions standards for a light-duty diesel vehicle under real driving emissions (RDE) testing conditions by implementing various control strategies. In this study, RDE tests were performed by adjusting the air mass quantity and postinjection quantity in order to analyze engine-out and tail-pipe nitrogen oxides (NOx) emissions for different phases of RDE. The results showed that reducing in air mass quantity enabled the engine to operate in higher exhaust gas recirculation (EGR) rate regions, resulting in a 32.5% reduction in engine-out NOx emissions and an 80.4% decrease in tail-pipe NOx emissions. Increasing the postinjection quantity primarily enhanced the NOx conversion efficiency for the urban phase by 7.5%, leading to a 22.6% reduction in tail-pipe NOx emissions. By employing both strategies, vehicles can comfortably meet the CN6b emission regulations by a substantial margin.

9.
PLoS One ; 18(10): e0290704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37788274

RESUMO

The investigation of the coupling and coordination association between scientific and technological innovation and the eco-environmental system is of vital practical significance for promoting the high-quality economic development of China's Gansu province. The evaluation index system is constructed based on the explanation of the coupling and coordination mechanism of a "Binary system". Subsequently, a comprehensive evaluation model is developed using the entropy method, whereas the coupling coordination relationship between "Binary systems" is analyzed in the context of the coupling coordination degree model. The study findings indicate that the innovation drive has become the primary driving force that leads the high-quality economic development in Gansu province. Furthermore, the comprehensive development level and coupling and coordination degree of all systems in Gansu province demonstrate a sound trend of steadily rising. Additionally, there is an issue of uncoordinated development between scientific and technological innovation and eco-environment systems in Gansu province. Thus, this research study proposes certain policy suggestions, such as optimizing the environment of Sci-tech innovation, insisting on the priority of ecology, increasing the input of Sci-tech innovation, and building up a contingent of talents.


Assuntos
Meio Ambiente , Invenções , Ecologia , Desenvolvimento Econômico , China , Cidades
10.
Plast Reconstr Surg Glob Open ; 11(9): e5254, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37736070

RESUMO

Background: This study aimed to investigate the efficacy and safety of CO2 fractional laser combined with Mebo burn ointment in treating facial postoperative scars. Methods: Sixty patients with facial postoperative scars in the department of plastic surgery of Sun Yat-sen Memorial Hospital from January 2020 to June 2022 were divided into a control group (30 cases) and a study group (30 cases). Both groups received CO2 fractional laser treatment, but the study group also received Mebo burn ointment application. Results: The study found that both methods resulted in a significant decrease in Sawada score and a significant increase in Investigator Global Assessment score after treatment (P < 0.05), with the study group showing a more significant improvement and higher patient satisfaction (P < 0.05). All patients experienced varying degrees of bleeding, swelling, and erythema immediately after treatment, with two cases of pigmentation and two cases of persistent erythema in the control group, and one case of pigmentation and one case of persistent erythema in the study group. Adverse reactions were minimal, with the study group showing better tolerance. Conclusions: The study suggests that CO2 fractional laser combined with Mebo burn ointment is an effective and safe treatment for facial postoperative scars.

11.
Appl Microbiol Biotechnol ; 107(22): 6859-6871, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713113

RESUMO

Chitosan derivates with varying degrees of polymerization (DP) have attracted great concern due to their excellent biological activities. Increasing the abundance of chitosanases with different degradation modes contributes to revealing their catalytic mechanisms and facilitating the production of chitosan derivates. However, the identification of endo-chitosanases capable of producing chitobiose and D-glucosamine (GlcN) from chitosan substrates has remained elusive. Herein, an endo-chitosanase (CsnCA) belonging to the GH46 family was identified based on structural analysis in phylogenetic evolution. Moreover, we demonstrate that CsnCA acts in a random endo-acting manner, producing chitosan derivatives with DP ≤ 2. The in-depth analysis of CsnCA revealed that (GlcN)3 serves as the minimal substrate, undergoing cleavage in the mode that occupies the subsites - 2 to + 1, resulting in the release of GlcN. This study succeeded in discovering a chitosanase with distinctive degradation modes, which could facilitate the mechanistic understanding of chitosanases, further empowering the production of chitosan derivates with specific DP. KEY POINTS: • Structural docking and evolutionary analysis guide to mining the chitosanase. • The endo-chitosanase exhibits a unique GlcN-producing cleavage pattern. • The cleavage direction of chitosanase to produce GlcN was identified.

12.
J Agric Food Chem ; 71(37): 13828-13837, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37676277

RESUMO

Zeaxanthin is a carotenoid, a dihydroxy derivative of ß-carotene. Zeaxanthin has antioxidant, anti-inflammatory, anticancer, and neuroprotective properties. In this study, Yarrowia lipolytica was used as a host for the efficient production of zeaxanthin. The strain Y. lipolytica PO1h was used to construct the following engineered strains for carotenoid production since it produced the highest ß-carotene among the Y. lipolytica PO1h- and Y. lipolytica PEX17-HA-derived strains. By regulating the key nodes on the carotenoid pathway through wild and mutant enzyme comparison and successive modular assembly, the ß-carotene concentration was improved from 19.9 to 422.0 mg/L. To provide more precursor mevalonate, heterologous genes mvaE and mvaSMT were introduced to increase the production of ß-carotene by 27.2% to the yield of 536.8 mg/L. The ß-carotene hydroxylase gene crtZ was then transferred, resulting in a yield of zeaxanthin of 326.5 mg/L. The oxidoreductase RFNR1 and CrtZ were then used to further enhance zeaxanthin production, and the yield of zeaxanthin was up to 775.3 mg/L in YPD shake flask.


Assuntos
Engenharia Metabólica , Yarrowia , beta Caroteno , Yarrowia/genética , Zeaxantinas , Carotenoides
13.
Sci Total Environ ; 903: 166212, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567279

RESUMO

Interfacial solar evaporators are widely used to purify water. However, photothermal materials commonly constituting most interfacial solar evaporators remain expensive; additionally, the inherent structure of the evaporators limits their performance. Furthermore, the large amount of waste cotton produced by the textile industry is an environmental threat. To address these issues, we propose an interfacial solar evaporator, H-CA-CS, with a hierarchical porous structure. This evaporator is made entirely of waste cotton and uses carbon microspheres (CMS) and cellulose aerogel (CA) as photothermal and substrate materials, respectively. Additionally, its photothermal layer (CS layer) has large pores and a high porosity, which promote light absorption and timely vapor escape. In contrast, the water transport layer (CA layer) has small pores, providing a robust capillary effect for water transport. Combined with the outstanding light absorption properties of CMS, H-CA-CS exhibited superior overall performance. We found that H-CA-CS has an excellent evaporation rate (1.68 kg m-2 h-1) and an efficiency of 90.6 % under one solar illumination (1 kW m-2), which are superior to those of many waste-based solar evaporators. Moreover, H-CA-CS maintained a mean evaporation rate of 1.61 kg m-2 h-1, ensuring sustainable evaporation performance under long-term scenarios. Additionally, H-CA-CS can be used to purify seawater and various types of wastewater with removal efficiencies exceeding 99 %. In conclusion, this study proposes a method for efficiently using waste cotton to purify water and provides novel ideas for the high-value use of other waste fibers to further mitigate ongoing environmental degradation.

14.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571476

RESUMO

Finding ways to enable seamless communication between deaf and able-bodied individuals has been a challenging and pressing issue. This paper proposes a solution to this problem by designing a low-cost data glove that utilizes multiple inertial sensors with the purpose of achieving efficient and accurate sign language recognition. In this study, four machine learning models-decision tree (DT), support vector machine (SVM), K-nearest neighbor method (KNN), and random forest (RF)-were employed to recognize 20 different types of dynamic sign language data used by deaf individuals. Additionally, a proposed attention-based mechanism of long and short-term memory neural networks (Attention-BiLSTM) was utilized in the process. Furthermore, this study verifies the impact of the number and position of data glove nodes on the accuracy of recognizing complex dynamic sign language. Finally, the proposed method is compared with existing state-of-the-art algorithms using nine public datasets. The results indicate that both the Attention-BiLSTM and RF algorithms have the highest performance in recognizing the twenty dynamic sign language gestures, with an accuracy of 98.85% and 97.58%, respectively. This provides evidence for the feasibility of our proposed data glove and recognition methods. This study may serve as a valuable reference for the development of wearable sign language recognition devices and promote easier communication between deaf and able-bodied individuals.


Assuntos
Língua de Sinais , Dispositivos Eletrônicos Vestíveis , Humanos , Fala , Algoritmos , Audição
15.
Small ; 19(52): e2304877, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635127

RESUMO

Interfacial solar steam generators (ISSGs) can capture solar energy and concentrate the heat at the gas-liquid interface, resulting in efficient water evaporation. However, traditional ISSGs have limitations in long-term seawater desalination processes, such as limited light absorption area, slow water transport speed, severe surface salt accumulation, and weak mechanical performance. Inspired by lotus seedpods, a novel ISSG (rGO-SA-PSF) is developed by treating a 3D warp-knitted spacer fabric with plasma (PSF) and combining it with sodium alginate (SA) and reduces graphene oxide (rGO). The rGO-SA-PSF utilizes a core-suction effect to achieve rapid water pumping and employs aerogel to encapsulate the plasma-treated spacer yarns to create the lotus seedpod-inspired hydrophilic stems, innovatively constructing multiple directional water transport channels. Simultaneously, the large holes of rGO-SA-PSF on the upper layer form lotus seedpod-inspired head concave holes, enabling efficient light capture. Under 1 kW m-2 illumination, rGO-SA-PSF exhibits a rapid evaporation rate of 1.85 kg m-2  h-1 , with an efficiency of 96.4%. Additionally, it shows superior salt tolerance (with no salt accumulation during continuous evaporation for 10 h in 10% brine) and self-desalination performance during long-term seawater desalination processes. This biomimetic ISSG offers a promising solution for efficient and stable seawater desalination and wastewater purification.

16.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513329

RESUMO

Microbial factors, including bacteria, viruses, and other pathogens, are significant contributors to foodborne illnesses, posing serious food safety risks due to their potential for rapid growth and contamination. Listeria monocytogenes is one of the most common types of foodborne bacteria that can cause serious foodborne diseases or even fatalities. In this study, a novel nucleic acid amplification method called Proofman-LMTIA was employed to detect Listeria monocytogenes contamination in food. This method combines proofreading enzyme-mediated probe cleavage with ladder-shape melting temperature isothermal amplification. A positive recombinant plasmid was used as a control to ensure the accuracy of the detection results, and primers and Proofman probes were specifically designed for the LMTIA. Genomic DNA was extracted, the reaction temperature was optimized, and the primers' specificity was verified using foodborne pathogens like Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella. The sensitivity was assessed by testing serial dilutions of genomic DNA, and the method's applicability was confirmed by detecting artificially contaminated fresh pork. The established LMTIA method exhibited both high specificity and sensitivity. At the optimal reaction temperature of 63 °C, the primers specifically identified Listeria monocytogenes contamination in pork at a concentration of 8.0 ± 0.7 colony-forming units (CFUs) per 25 g. Furthermore, the Proofman-LMTIA method was applied to test Listeria monocytogenes DNA in 30 food samples purchased from a Chinese retail market, and reassuringly, all results indicated no contamination. Proofman-LMTIA can serve as a reliable and rapid method for detecting Listeria monocytogenes in food, contributing to public health by safeguarding consumers from foodborne illnesses, and strengthening food safety regulations.


Assuntos
Doenças Transmitidas por Alimentos , Listeria monocytogenes , Humanos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Listeria monocytogenes/genética , Sensibilidade e Especificidade , Contagem de Colônia Microbiana
17.
PeerJ ; 11: e15407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250720

RESUMO

Background: PFI-3 is a small-molecule inhibitor that targets the bromodomains (BRDs) of Brahma-related gene 1 (BRG1). This monomeric compound, which has high selectivity and potent cellular effects, has recently been developed. Although PFI-3 has been reported as a potential therapeutic agent targeting thrombomodulin, its role in the regulation of vascular function remains unknown. Therefore, we aimed to investigate the impact of PFI-3 on arterial vessel tone. Methods: A microvascular tension measurement device (DMT) was utilized to identify alterations in vascular tension within the mesenteric artery. To detect variations in cytosolic [Ca2+]i, a Fluo-3/AM fluorescent probe and fluorescence microscope were employed. Additionally, whole-cell patch clamp techniques were utilized to evaluate the activity of L-type voltage-dependent calcium channels (VDCCs) in cultured arterial smooth muscle cells (A10 cells). Results: PFI-3 exerted a dose-dependent relaxation effect on rat mesenteric arteries with both intact and denuded endothelium after phenylephrine (PE)- and high-K+-induced constriction. PFI-3-induced vasorelaxation was not affected by the presence of L-NAME/ODQ or K+ channel blockers (Gli/TEA). PFI-3 abolished Ca2+-induced contraction on endothelium-denuded mesenteric arteries preincubated by PE in Ca2+-free solution. Incubation with TG had no impact on PFI-3-induced vasorelaxation pre-contracted by PE. PFI-3 reduced Ca2+-induced contraction on endothelium-denuded mesenteric arteries pre-incubated by KCl (60 mM) in Ca2+-free solution. PFI-3 declined extracellular calcium influx in A10 cells detected by Fluo-3/AM fluorescent probe and fluorescence microscope. Furthermore, we observed that PFI-3 decreased the current densities of L-type VDCC by whole-cell patch clamp techniques. Conclusions: PFI-3 blunted PE and high K+-induced vasoconstriction independent of endothelium on rat mesenteric artery. The vasodilatory effect of PFI-3 may be attributed to its inhibition of VDCCs and receptor-operated calcium channels (ROCCs) on vascular smooth muscle cells (VSMCs).


Assuntos
Cálcio , Corantes Fluorescentes , Animais , Ratos , Cálcio/metabolismo , Canais de Cálcio Tipo L/farmacologia , Corantes Fluorescentes/farmacologia , Artérias Mesentéricas
18.
Comput Biol Med ; 159: 106938, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119553

RESUMO

Using ECG signals captured by wearable devices for emotion recognition is a feasible solution. We propose a deep convolutional neural network incorporating attentional mechanisms for ECG emotion recognition. In order to address the problem of individuality differences in emotion recognition tasks, we incorporate an improved Convolutional Block Attention Module (CBAM) into the proposed deep convolutional neural network. The deep convolutional neural network is responsible for capturing ECG features. Channel attention in CBAM is responsible for adding weight information to ECG features of different channels and spatial attention is responsible for the weighted representation of ECG features of different regions inside the channel. We used three publicly available datasets, WESAD, DREAMER, and ASCERTAIN, for the ECG emotion recognition task. The new state-of-the-art results are set in three datasets for multi-class classification results, WESAD for tri-class results, and ASCERTAIN for two-category results, respectively. A large number of experiments are performed, providing an interesting analysis of the design of the convolutional structure parameters and the role of the attention mechanism used. We propose to use large convolutional kernels to improve the effective perceptual field of the model and thus fully capture the ECG signal features, which achieves better performance compared to the commonly used small kernels. In addition, channel attention and spatial attention were added to the deep convolutional model separately to explore their contribution levels. We found that in most cases, channel attention contributed to the model at a higher level than spatial attention.


Assuntos
Redes Neurais de Computação , Dispositivos Eletrônicos Vestíveis , Algoritmos , Emoções , Eletrocardiografia
19.
BMC Cancer ; 23(1): 242, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918803

RESUMO

BACKGROUND: To examine the levels of exosome-derived connexin 43 (Cx43) in plasma and estimate its forecast value in patients with melanoma. METHODS: We measured the plasma exosome-derived Cx43 levels in the plasma of 112 melanoma patients and 50 healthy controls. RESULTS: The plasma exosome-derived Cx43 levels in patients with melanoma were substantially downregulated as opposed to the levels in healthy controls (P < 0.001). Kaplan-Meier analysis indicated that overall survival (OS) and disease-free survival (DFS) were poorer in patients with melanoma who exhibited lower levels of plasma exosome-derived Cx43 (both P < 0.001). The levels of plasma exosome-derived Cx43 were considerably elevated in patients with melanoma whose tumor was situated in the skin, tumor size < 10 cm, with Clark level I-III, TNM stages IIb-IV, and had no lymph node metastasis as opposed to patients whose tumor was situated in the viscera or mucosa, tumor size ≥ 10 cm, Clark level IV-V, TNM stages IIb-IV and had lymph node metastasis (all P < 0.05). The receiver operating characteristic (ROC) of plasma exosome-derived Cx43 for forecasting 5-year DFS in patients with melanoma was 0.78 (95% confidence interval (CI): 0.70-0.86), with a specificity of 77.78% and a sensitivity of 81.55%. The ROC of plasma exosome-derived Cx43 for forecasting 5-year OS of patients with melanoma was 0.77 (95% CI: 0.68-0.84), with a specificity of 80.0% and sensitivity of 65.98%. CONCLUSION: The overall findings indicated that the levels of plasma exosome-derived Cx43 in patients with melanoma were considerably downregulated. It can therefore be inferred that the levels of plasma exosome-derived Cx43 might be a prospective prognostic indicator for 5 5-year OS and 5-year DFS of patients with melanoma.


Assuntos
Exossomos , Melanoma , Neoplasias Cutâneas , Humanos , Conexina 43 , Estudos Prospectivos , Melanoma/patologia , Prognóstico , Biomarcadores , Neoplasias Cutâneas/patologia
20.
Food Sci Nutr ; 11(2): 838-852, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789039

RESUMO

High-temperature pretreatment was developed in this article to remove the main toxic constituents of ginkgolic acids (GAs) from Ginkgo biloba leaves (GBLs) and improve the bioactive flavonoid content by water extraction. To optimize the effects of high-temperature pretreatment process parameters on removing toxic GAs to a limited level and improving the content of bioactive flavonoids, a Box-Behnken design (BBD) combined with response surface methodology (RSM) was also conducted. The results showed that the content of GAs could be reduced to 4.11 ppm and the highest content of flavonoids could reach 3.51% under the optimized conditions of high-temperature pretreatment process of 177°C with water extraction at 96°C at a liquid-to-solid ratio of 56:1. The content of toxic GAs substantially decreased by 83.50% while the content of bioactive flavonoids increased by 44.30% compared with the conventional water extraction method. Moreover, the new process was more efficient, environmentally friendly, and could get avoid a subsequent multi-step process of removing toxic GAs. The crude extracts were then purified by macroporous resin to obtain the 60% ethanol fraction. After purification, the flavonoid content increased to 43.50% while the GAs were not detected. The main compounds of 60% ethanol fraction were identified by UPLC-QTOF-MS/MS. Antioxidant activities including reducing powder, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and OH· scavenging assays all showed that the 60% ethanol fraction was better than the butylated hydroxytoluene (BHT) standard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...