Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Integr Plant Biol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607264

RESUMO

Drought stress is a crucial environmental factor that limits plant growth, development, and productivity. Autophagy of misfolded proteins can help alleviate the damage caused in plants experiencing drought. However, the mechanism of autophagy-mediated drought tolerance in plants remains largely unknown. Here, we cloned the gene for a maize (Zea mays) selective autophagy receptor, NEXT TO BRCA1 GENE 1 (ZmNBR1), and identified its role in the response to drought stress. We observed that drought stress increased the accumulation of autophagosomes. RNA sequencing and reverse transcription-quantitative polymerase chain reaction showed that ZmNBR1 is markedly induced by drought stress. ZmNBR1 overexpression enhanced drought tolerance, while its knockdown reduced drought tolerance in maize. Our results established that ZmNBR1 mediates the increase in autophagosomes and autophagic activity under drought stress. ZmNBR1 also affects the expression of genes related to autophagy under drought stress. Moreover, we determined that BRASSINOSTEROID INSENSITIVE 1A (ZmBRI1a), a brassinosteroid receptor of the BRI1-like family, interacts with ZmNBR1. Phenotype analysis showed that ZmBRI1a negatively regulates drought tolerance in maize, and genetic analysis indicated that ZmNBR1 acts upstream of ZmBRI1a in regulating drought tolerance. Furthermore, ZmNBR1 facilitates the autophagic degradation of ZmBRI1a under drought stress. Taken together, our results reveal that ZmNBR1 regulates the expression of autophagy-related genes, thereby increasing autophagic activity and promoting the autophagic degradation of ZmBRI1a under drought stress, thus enhancing drought tolerance in maize. These findings provide new insights into the autophagy degradation of brassinosteroid signaling components by the autophagy receptor NBR1 under drought stress.

2.
Proc Natl Acad Sci U S A ; 121(17): e2315696121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38640344

RESUMO

Quantum amplification enables the enhancement of weak signals and is of great importance for precision measurements, such as biomedical science and tests of fundamental symmetries. Here, we observe a previously unexplored magnetic amplification using dark noble-gas nuclear spins in the absence of pump light. Such dark spins exhibit remarkable coherence lasting up to 6 min and the resilience against the perturbations caused by overlapping alkali-metal gas. We demonstrate that the observed phenomenon, referred to as "dark spin amplification," significantly magnifies magnetic field signals by at least three orders of magnitude. As an immediate application, we showcase an ultrasensitive magnetometer capable of measuring subfemtotesla fields in a single 500-s measurement. Our approach is generic and can be applied to a wide range of noble-gas isotopes, and we discuss promising optimizations that could further improve the current signal amplification up to [Formula: see text] with [Formula: see text]Ne, [Formula: see text] with [Formula: see text]Xe, and [Formula: see text] with [Formula: see text]He. This work unlocks opportunities in precision measurements, including searches for ultralight dark matter with sensitivity well beyond the supernova-observation constraints.

3.
Front Immunol ; 15: 1328266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550592

RESUMO

Background: Porcine deltacoronavirus (PDCoV), a novel swine enteropathogenic coronavirus, challenges the global swine industry. Currently, there are no approaches preventing swine from PDCoV infection. Methods: A new PDCoV strain named JS2211 was isolated. Next, the dimer receptor binding domain of PDCoV spike protein (RBD-dimer) was expressed using the prokaryotic expression system, and a novel nanoparticle containing RBD-dimer and ferritin (SC-Fe) was constructed using the SpyTag/SpyCatcher system. Finally, the immunoprotection of RBD-Fe nanoparticles was evaluated in mice. Results: The novel PDCoV strain was located in the clade of the late Chinese isolate strains and close to the United States strains. The RBD-Fe nanoparticles were successfully established. Immune responses of the homologous prime-boost regime showed that RBD-Fe nanoparticles efficiently elicited specific humoral and cellular immune responses in mice. Notably, high level PDCoV RBD-specific IgG and neutralizing antibody (NA) could be detected, and the histopathological results showed that PDCoV infection was dramatically reduced in mice immunized with RBD-Fe nanoparticles. Conclusion: This study effectively developed a candidate nanoparticle with receptor binding domain of PDCoV spike protein that offers protection against PDCoV infection in mice.


Assuntos
Nanovacinas , Glicoproteína da Espícula de Coronavírus , Suínos , Animais , Camundongos , Deltacoronavirus , Imunidade , SARS-CoV-2
4.
Front Microbiol ; 15: 1287637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426052

RESUMO

Background: Currently, there has been observed a significant alteration in the composition of the gut microbiome (GM) and serum metabolites in patients with psoriatic arthritis (PsA) compared to healthy individuals. However, previous observational studies have shown inconsistent results regarding the alteration of gut microbiota/metabolites. In order to shed light on this matter, we utilized Mendelian randomization to determine the causal effect of GM/metabolites on PsA. Methods: We retrieved summary-level data of GM taxa/metabolites and PsA from publicly available GWAS statistics. Causal relationships between GM/metabolites and PsA were determined using a two-sample MR analysis, with the IVW approach serving as the primary analysis method. To ensure the robustness of our findings, we conducted sensitivity analyses, multivariable MR analysis (MVMR), and additional analysis including replication verification analysis, LDSC regression, and Steiger test analysis. Furthermore, we investigated reverse causality through a reverse MR analysis. Finally, we conducted an analysis of expression quantitative trait loci (eQTLs) involved in the metabolic pathway to explore potential molecular mechanisms of metabolism. Results: Our findings reveal that eight GM taxa and twenty-three serum metabolites are causally related to PsA (P < 0.05). Notably, a higher relative abundance of Family Rikenellaceae (ORIVW: 0.622, 95% CI: 0.438-0.883, FDR = 0.045) and elevated serum levels of X-11538 (ORIVW: 0.442, 95% CI: 0.250-0.781, FDR = 0.046) maintain significant causal associations with a reduced risk of PsA, even after adjusting for multiple testing correction and conducting MVMR analysis. These findings suggest that Family Rikenellaceae and X-11538 may have protective effects against PsA. Our sensitivity analysis and additional analysis revealed no significant horizontal pleiotropy, reverse causality, or heterogeneity. The functional enrichment analysis revealed that the eQTLs examined were primarily associated with glycerolipid metabolism and the expression of key metabolic factors influenced by bacterial infections (Vibrio cholerae and Helicobacter pylori) as well as the mTOR signaling pathway. Conclusion: In conclusion, our study demonstrates that Family Rikenellaceae and X-11538 exhibit a strong and negative causal relationship with PsA. These particular GM taxa and metabolites have the potential to serve as innovative biomarkers, offering valuable insights into the treatment and prevention of PsA. Moreover, bacterial infections and mTOR-mediated activation of metabolic factors may play an important role in this process.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38401073

RESUMO

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder affecting joint health and patients' overall well-being. While methotrexate (MTX) is a standard therapeutic intervention, enhancing its efficacy with pain-specific nursing remains underexplored. Objective: This study aims to assess the impact of combining MTX with pain-specific nursing on patients with RA, providing valuable insights for clinical practice and offering an improved therapeutic approach to alleviate pain and enhance the overall quality of life for affected individuals. Methods: We conducted a prospective cohort study, choosing a cohort of 86 RA patients admitted to our hospital from March 2021 to March 2023. After treatment, we compared the number of swollen and painful joints, duration of morning stiffness, and scores on the Visual Analogue Scale (VAS), Pittsburgh Sleep Quality Index (PSQI), and Self-rating Anxiety Scale/Self-rating Depression Scale (SAS/SDS) between the two groups. Nursing satisfaction was surveyed upon discharge, and patient quality of life was assessed using the 36-item Short Form Health Survey (SF-36). Results: The research group exhibited a notable decrease in the number of swollen and painful joints, significantly shorter morning stiffness duration, and marked reductions in VAS, PSQI, SAS, and SDS scores compared to the control group (P < .05). Additionally, nursing satisfaction and SF-36 scores were higher in the research group (P < .05). Conclusions: The combination of MTX and pain-specific nursing effectively alleviated pain and improved the quality of life and nursing satisfaction among RA patients.

6.
Antiviral Res ; 223: 105825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311297

RESUMO

Feline coronavirus (FCoV) is an unsegmented, single-stranded RNA virus belonging to the Alphacoronavirus genus. It can cause fatal feline infectious peritonitis (FIP) in cats of any ages. Currently, there are no effective prevention and control measures to against FCoV. In this study, we developed a recombinant adenovirus vaccine, AD5-N, based on the nucleocapsid(N) protein of FCoV. The immunogenicity of AD5-N was evaluated through intramuscular immunization in 6-week-old Balb/c mice and 9-12 months old cats. Compared to the control group, AD5-N specifically induced a significant increase in IgG and SIgA levels in the vaccinated mice. Furthermore, AD5-N not only effectively promoted strong cellular immune responses in cats but also induced high levels of specific SIgA, effectively helping cats resist FCoV infection. Our findings suggest that adenovirus vector vaccines based on the N gene have the potential to become candidate vaccines for the prevention and control of FCoV infection.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , Infecções por Coronavirus , Coronavirus Felino , Vacinas , Gatos , Animais , Camundongos , Adenoviridae/genética , Coronavirus Felino/genética , Imunoglobulina A Secretora , Camundongos Endogâmicos BALB C , Imunidade
7.
J Agric Food Chem ; 72(2): 1292-1301, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38178001

RESUMO

Pests represent an important impediment to efficient agricultural production and pose a threat to global food security. On the basis of our prior research focused on identifying insecticidal leads targeting insect ryanodine receptors (RyRs), we aimed to identify evodiamine scaffold-based novel insecticides. Thus, a variety of evodiamine-based derivatives were designed, synthesized, and assessed for their insecticidal activity against the larvae of Mythimna separata (M. separata) and Plutella xylostella (P. xylostella). The preliminary bioassay results revealed that more than half of the target compounds exhibited superior activity compared to evodiamine, matrine, and rotenone against M. separata. Among these, compound 21m displayed the most potent larvicidal efficiency, with a remarkable mortality rate of 93.3% at 2.5 mg/L, a substantial improvement over evodiamine (10.0% at 10 mg/L), matrine (10.0% at 200 mg/L), and rotenone (30.0% at 200 mg/L). In the case of P. xylostella, compounds 21m and 21o displayed heightened larvicidal activity, boasting LC50 values of 9.37 × 10-2 and 0.13 mg/L, respectively, surpassing that of evodiamine (13.41 mg/L), matrine (291.78 mg/L), and rotenone (18.39 mg/L). A structure-activity relationship analysis unveiled that evodiamine-based derivatives featuring a cyclopropyl sulfonyl group at the nitrogen atom of the B ring and a fluorine atom in the E ring exhibited more potent larvicidal effects. This finding was substantiated by calcium imaging experiments and molecular docking, which suggested that 21m could target insect RyRs, including resistant mutant RyRs of P. xylostella (G4946E and I4790M), with higher affinity than chlorantraniliprole (CHL). Additionally, cytotoxicity assays highlighted that the potent compounds 21i, 21m, and 21o displayed favorable selectivity and low toxicity toward nontarget organisms. Consequently, compound 21m emerges as a promising candidate for further development as an insecticide targeting insect RyRs.


Assuntos
Inseticidas , Mariposas , Quinazolinas , Animais , Inseticidas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina , Rotenona , Simulação de Acoplamento Molecular , Matrinas , Larva , Sulfonamidas
8.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569563

RESUMO

Group A rotaviruses (RVAs) are major etiologic agents of gastroenteritis in infants and young children worldwide. To study the prevalence and genetic characteristics of RVAs, a hospital-based surveillance study was conducted in Wuhan, China from June 2019 through May 2022. The detection rates of RVAs were 19.40% (142/732) and 3.51% (8/228) in children and adults, respectively. G9P[8] was the predominant genotype, followed by G8P[8] and G3P[8]. G8P[8] emerged and was dominant in the 2021-2022 epidemic season. The genome constellation of six G8P[8] strains was assigned to G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP7, VP4, VP2, VP3, NSP1, NSP2, NSP3, and NSP5 genes of these G8P[8] strains clustered closely with those of the G8P[8] strains in Asia and were distant from those of the P[8] and G2P[4] strains simultaneously detected in Wuhan. In contrast, the VP1, VP6, and NSP4 genes were closely related to the typical G2P[4] rotavirus, including those of G2P[4] strains simultaneously detected in Wuhan. The detection rate of RVAs decreased in the COVID-19 pandemic era. It was deduced that the G8P[8] rotaviruses that emerged in China may be reassortants, carrying the VP6, VP1, and NSP4 genes derived from the G2P[4] rotavirus in the backbone of the neighboring DS-1-like G8P[8] strains represented by CAU17L-103.


Assuntos
COVID-19 , Infecções por Rotavirus , Rotavirus , Lactente , Criança , Humanos , Pré-Escolar , Rotavirus/genética , Infecções por Rotavirus/genética , Filogenia , Pandemias , Genoma Viral , COVID-19/genética , Genótipo , China/epidemiologia
9.
Plant Dis ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627802

RESUMO

The Gleditsia sinensis Lam. widely grown in China is a perennial plant with medicinal properties (Zhang et al. 2016). Since 2019, the leaves of G. sinensis have exhibited yellowing and wilting, and the plants have gradually become stunted and dead in Taifeng park of Binhai New Area in Tianjin (39.02° N; 117.65° E). In this park, there are two types of G. sinensis, one is with round branch thorns, the other is with flat branch thorns. The G. sinensis with round branch thorns did not grow well and almost all plants had disease symptoms. The samples were collected on October, 2021 and deposited in Plant Disease Laboratory of Tianjin Agricultural University under accession no. PATAU211018. The disease symptoms consisted of foliage wilt (Figure 1A), plant drying and vascular tissue discoloration (Figure 1B). The stem sections from different plants were surface-disinfested in 0.6% NaClO, wiped with 75% ethanol and rinsed with sterile water. Thirty tissue samples were placed on Potato Dextrose Agar (PDA) medium and cultured at 28℃ for 7 days (Uppala et al. 2013). Thirty fungal isolates with the same morphological characteristics were obtained from the samples. Five representative isolates (PATAU211018-05, PATAU211018-07, PATAU211018-10, PATAU211018-12 and PATAU211018-21) were collected and purified using the single-spore method (Li et al. 2022). Colonies of the five isolates on PDA grew in a circular shape and showed abundant white densely fluffy aerial mycelium (Figure 1C). Morphological characteristics included septate and hyaline hyphae, long cylindrical monophialides (Figure 1D), macroconidia (Figure 1E) and microconidia (Figure 1F). Macroconidia were falcate, 2-5-septate, hyaline, 18-40 × 4-6 µm (n = 50). Microconidia were hyaline, oblong, 0-1-septate, 5-14 × 2-6 µm (n = 50). These morphological characteristics were consistent with the description of Fusarium solani. (Chitrampalam et al. 2018). PATAU211018-12 was randomly chosen for molecular analysis as the representative isolate given the similarity of these isolates. For further identification, the genomic DNA of isolate PATAU211018-12 was extracted. The fragments of internal transcribed spacer (ITS), translation elongation factor 1α (EF1α) gene and RNA polymerase II subunit (RPB2) were amplified and sequenced (O'Donnell et al. 2008; Carbone et al. 1999). The sequences of ITS, EF1α, and RPB2 of PATAU211018-12 were deposited in GenBank under the accession no. of OP735578, ON630412 and OP746032, respectively. Phylogenetic trees were constructed in MAGA X (Kumar et al. 2018) using the neighbor-joining (NJ) method based on the concatenated sequences of ITS, EF1α, and RPB2 (Figure 2). The isolate (PATAU211018-12) grouped with F. solani (JS-169) with a bootstrap value of 100 in the phylogenetic tree. The morphology and multi-gene phylogenetic analysis indicated that the new isolate is F. solani. Pathogenicity tests were carried out on one-year-old G. sinensis seedlings with round branch thorns (n=6). The F. solani isolate PATAU211018-12 was cultured in Potato Dextrose Broth (PDB) at 28°C on a shaker at 150 rpm for 5 days. Mycelia were filtered through four layers of sterilized lens paper and the conidia were obtained for pathogenicity tests. G. sinensis was infected by F. solani through root soaking method. The roots were inoculated by dipping in conidial suspension with the concentration of 107 conidia/mL for 30 minutes. Control plants (n=6) were treated with distilled water. Plants were in pots indoors at 25℃. At 20 days after inoculation, the leaves of inoculated plants were chlorotic and wilted (Figure 1G), symptoms similar to those observed in the park. In contrast, the leaves of control plants were symptomless (Figure 1H). The pathogenicity assay was repeated three times. The fungal isolate was re-isolated from the disease tissues and verified as F. solani based on morphology and molecular character (ITS, EF1α and RPB2). F. solani has been reported as pathogens on many plants, such as Eriobotrya japonica (Wu et al. 2021), Fragaria × ananassa (Pastrana et al. 2014), Gastrodia elata (Li et al. 2022) and Hedysarum boreale (Uppala et al. 2013). To our knowledge, this is the first report of F. solani causing disease on G. sinensis in China. Identification of F. solani as a disease agent in G. sinensis will assist in disease management for this important tree crop.

10.
Sci Adv ; 9(1): eade0353, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608126

RESUMO

Quantum sensing provides sensitive tabletop tools to search for exotic spin-dependent interactions beyond the standard model, which have attracted great attention in theories and experiments. Here, we develop a technique based on Spin Amplifier for Particle PHysIcs REsearch (SAPPHIRE) to resonantly search for exotic interactions, specifically parity-odd spin-spin interactions. The present technique effectively amplifies exotic interaction fields by a factor of about 200 while being insensitive to spurious magnetic fields. Our studies, using such a quantum amplification technique, explore the parity-violation interactions mediated by a new vector boson in the challenging parameter space (force range between 3 mm and 1 km) and set the most stringent constraints on axial-vector electron-neutron couplings, substantially improving previous limits by five orders of magnitude. Moreover, our constraints on axial-vector couplings between nucleons reach into a hitherto unexplored parameter space. The present constraints complement the existing astrophysical and laboratory studies on potential standard model extensions.

11.
Front Plant Sci ; 13: 1064589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523612

RESUMO

The loss of tomatoes caused by Botrytis cinerea (B. cinerea) is one of the crucial issues restricting the tomato yield. This study screened the elicitor protein phosphopentomutase from Bacillus velezensis LJ02 (BvEP) which improves the tomato resistance to B. cinerea. Phosphatemutase was reported to play a crucial role in the nucleoside synthesis of various microorganisms. However, there is no report on improving plant resistance by phosphopentomutase, and the related signaling pathway in the immune response has not been elucidated. High purity recombinant BvEP protein have no direct inhibitory effect on B. cinerea in vitro,and but induce the hypersensitivity response (HR) in Nicotiana tabacum. Tomato leaves overexpressing BvEP were found to be significantly more resistant to B. cinerea by Agrobacterium-mediated genetic transformation. Several defense genes, including WRKY28 and PTI5 of PAMP-triggered immunity (PTI), UDP and UDP1 of effector-triggered immunity (ETI), Hin1 and HSR203J of HR, PR1a of systemic acquired resistance (SAR) and the SAR related gene NPR1 were all up-regulated in transgenic tomato leaves overexpressing BvEP. In addition, it was found that transient overexpression of BvEP reduced the rotting rate and lesion diameter of tomato fruits caused by B. cinerea, and increased the expression of PTI, ETI, SAR-related genes, ROS content, SOD and POD activities in tomato fruits, while there was no significant effect on the weight loss and TSS, TA and Vc contents of tomato fruits. This study provides new insights into innovative breeding of tomato disease resistance and has great significance for loss reduction and income enhancement in the tomato industry.

12.
Mar Drugs ; 20(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36286455

RESUMO

Glycosaminoglycan from Apostichopus japonicus (AHG) and its depolymerized fragments (DAHGs) are anticoagulant fucosylated chondroitin sulfate. The aim of this study was to further evaluate the anticoagulant and antithrombic activity of AHG and DAHGs, as well as reveal the dynamic relationship between exposure and effect in vivo. The results demonstrated that AHG100 (Mw~100 kDa), DAHG50 (Mw~50 kDa), and DAHG10 (Mw~10 kDa) exhibited potent anticoagulant activity by inhibiting intrinsic factor Xase complex (FXase) as well as antithrombin-dependent factor IIa (FIIa) and factor Xa (FXa). These glycosaminoglycans markedly prevented thrombosis formation and thrombin-induced platelet aggregation in a dose- and molecular weight-dependent manner in vitro and in vivo. The further bleeding time measurement indicated that DAHG10 exhibited obviously lower hemorrhage risks than native AHG100. Following oral administration, DAHG10 could be absorbed into blood, further dose-dependently prolonging activated partial thromboplastin time (APTT) and thrombin time (TT) as well as inhibiting FXa and FIIa partially through FXase. Anticoagulant activity was positively associated with plasma concentration following oral administration of DAHG10. Our study proposed a new point of view to understand the correlation between effects and exposure of fucosylated chondroitin sulfate as an effective and safe oral antithrombotic agent.


Assuntos
Anticoagulantes , Stichopus , Ratos , Animais , Anticoagulantes/farmacologia , Glicosaminoglicanos/farmacologia , Fator Xa , Coagulação Sanguínea , Trombina , Fibrinolíticos/farmacologia , Fator Intrínseco/farmacologia , Antitrombinas/farmacologia
13.
Food Sci Nutr ; 10(10): 3219-3229, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249987

RESUMO

Table grapes are susceptible to external pathogens during postharvest storage. The resulting continuous oxidative stress causes damage and aging, thereby reducing the defense against disease. In this study, the effect of biocontrol yeast T-2 on the storage performance of grapes was evaluated. After T-2 treatment, the grapefruits rot rate and lesion diameter caused by Botrytis cinerea (B. cinerea) were significantly decreased at 2-5 days after inoculation (DAI). Additionally, the browning rate and shedding rate of grapefruit during storage were significantly reduced at 2-5 DAI, and the weight loss rate was significantly reduced at 3-5 DAI. The decreased malondialdehyde (MDA) content in grapefruits at 1-5 DAI with T-2 indicated a reduction in oxidative damage. Furthermore, the activities of antioxidant enzymes such as peroxidase (POD), catalase (CAT), phenylalanin ammonia-lyase (PAL) were significantly increased during most storage time after being treated with T-2. Moreover, the contents of total phenolics and flavonoids and the expression levels of key enzyme genes in metabolic pathways were increased after T-2 treatment during most postharvest storage time, providing evidence that T-2 changed the biological process of phenolic flavonoid metabolism. The increase in enzymatic and nonenzymatic antioxidants after treatment with T-2 reflected the strengthening of the antioxidant system, hence postponing fruit senescence and promoting storage performance under the stress of B. cinerea.

14.
Front Microbiol ; 13: 869596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046019

RESUMO

Subtilisin, a serine protease, can trigger defense responses in a wide variety of plants, both locally and systemically, to protect against pathogens. However, key residues of subtilisin to improve resistance to plant diseases remain unknown. In this study, Nicotiana benthamiana (N. benthamiana) leaves expressing subtilisin from Bacillus velezensis LJ02 were shown to improve protection against Botrytis cinerea (B. cinerea). Furthermore, the underlying mechanism that LJ02 subtilisin improved the protective effect was explored, and the direct inhibitory effect of subtilisin on B. cinerea was excluded in vitro. Subsequently, reactive oxygen species (ROS) burst and upregulation of resistance-related genes in systemic leaves of N. benthamiana further verified that subtilisin could induce systemic protection against B. cinerea. G307A/T308A and S213A/L214A/G215A subtilisin significantly reduced the ability to resist B. cinerea infection in N. benthamiana. Furthermore, the ROS content and expression levels of resistance-related genes of both mutants were significantly decreased compared with that of wild-type subtilisin. This work identified key residues essential for the activation function of subtilisin plant immunity and was crucial in inducing plant defense responses against B. cinerea.

15.
Phys Rev Lett ; 129(5): 051801, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960560

RESUMO

Searches for the axion and axionlike particles may hold the key to unlocking some of the deepest puzzles about our Universe, such as dark matter and dark energy. Here, we use the recently demonstrated spin-based amplifier to constrain such hypothetical particles within the well-motivated "axion window" (10 µeV-1 meV) through searching for an exotic dipole-dipole interaction between polarized electron and neutron spins. The key ingredient is the use of hyperpolarized long-lived ^{129}Xe nuclear spins as an amplifier for the pseudomagnetic field generated by the exotic interaction. Using such a spin sensor, we obtain a direct upper bound on the product of coupling constants g_{p}^{e}g_{p}^{n}. The spin-based amplifier technique can be extended to searches for a wide variety of hypothetical particles beyond the standard model.

16.
Phys Rev Lett ; 128(23): 233201, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749190

RESUMO

Detection of weak electromagnetic waves and hypothetical particles aided by quantum amplification is important for fundamental physics and applications. However, demonstrations of quantum amplification are still limited; in particular, the physics of quantum amplification is not fully explored in periodically driven (Floquet) systems, which are generally defined by time-periodic Hamiltonians and enable observation of many exotic quantum phenomena such as time crystals. Here we investigate the magnetic-field signal amplification by periodically driven ^{129}Xe spins and observe signal amplification at frequencies of transitions between Floquet spin states. This "Floquet amplification" allows us to simultaneously enhance and measure multiple magnetic fields with at least one order of magnitude improvement, offering the capability of femtotesla-level measurements. Our findings extend the physics of quantum amplification to Floquet spin systems and can be generalized to a wide variety of existing amplifiers, enabling a previously unexplored class of "Floquet spin amplifiers".

17.
Front Cell Infect Microbiol ; 12: 884045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573768

RESUMO

Staphylococcus aureus has been recognized as an important human pathogen and poses a serious health threat worldwide. With the advent of antibiotic resistance, such as the increased number of methicillin-resistant Staphylococcus aureus (MRSA), there is an urgent need to develop new therapeutical agents. In this study, Chinese traditional medicine Tanreqing (TRQ) has been used as an alternative treating agent against MRSA and we aim to unravel the mode of action of TRQ underlying MRSA inhibition. TRQ treatment affected numerous gene expression as revealed by RNA-seq analysis. Meanwhile, TRQ targeted cell division to inhibit cell growth as shown by illumination microscopy. Besides, we confirmed that TRQ downregulates the expression of virulence factors such as hemolysin and autolysin. Finally, we used a murine model to demonstrate that TRQ efficiently reduces bacterial virulence. Altogether, we have proved TRQ formula to be an effective agent against S. aureus infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/uso terapêutico , Divisão Celular , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Chinesa , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulência , Fatores de Virulência/metabolismo
18.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628358

RESUMO

Myrothamnus flabellifolia is the only woody resurrection plant found in the world. It has a strong tolerance to drought and can survive long-term exposure to desiccated environments. However, few genes related to its drought tolerance have been functionally characterized and the molecular mechanisms underlying the stress tolerance of M. flabellifolia are largely unknown. In this study, we isolated a dehydration-inducible bHLH transcription factor gene MfbHLH145 from M. flabellifolia. Heterologous expression of MfbHLH145 enhanced the drought and salt tolerance of Arabidopsis. It can not only promote root system development under short-term stresses, but also improve growth performance under long-term treatments. Further investigation showed that MfbHLH145 contributes to enhanced leaf water retention capacity through the promotion of stomatal closure, increased osmolyte accumulation, and decreased stress-induced oxidative damage through an increase in antioxidant enzyme activities. These results suggest that MfbHLH145 may be involved in the positive regulation of stress responses in M. flabellifolia. This study provides insight into the molecular mechanism underlying the survival of M. flabellifolia in extreme dehydration conditions.


Assuntos
Arabidopsis , Tolerância ao Sal , Arabidopsis/metabolismo , Desidratação/genética , Secas , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética
19.
Bioorg Med Chem ; 62: 116727, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35366437

RESUMO

In the search for novel more effective insecticides, natural products could be used as ideal template compounds due to their good environmental compatibility, various bioactivities, unique scaffolds and mode of action. We have found that natural product evodiamine, the main active component from the fruits of Evodia rutaecarpa (Juss.) Benth, displayed obvious insecticidal activities against lepidoptera pests. To continue our research, a series of evodiamine derivatives 3a-3aa were rationally designed and synthesized. The larvicidal activities results indicated that most of target compounds displayed better efficacy than evodiamine, matrine, and rotenone against Mythimna separata, Plutella xylostella and Helicoverpa armigera, among which 3z exhibited excellent larvicidal activities (65% at 2.5 mg/L against M. separata, 75% at 1.0 mg/L against P. xylostella, and 85% 10 mg/L against H. armigera, respectively), much better than evodiamine (0%), matrine (0%), and rotenone (0%). The preliminary structure activity relationships demonstrated that the fluorine atom at the E ring of evodiamine had a positive influence on the larvicidal activity. The calcium imaging experiment studies indicated that 3z could act on the ryanodine receptor (RyR) of M. separata and was an effective calcium activator for RyR.


Assuntos
Inseticidas , Mariposas , Animais , Cálcio , Inseticidas/química , Inseticidas/farmacologia , Larva , Estrutura Molecular , Mariposas/metabolismo , Quinazolinas , Rotenona , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
20.
J Agric Food Chem ; 70(16): 5197-5206, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35435667

RESUMO

Pests threaten worldwide food security by decreasing crop yields and damaging their quality. Natural product-based molecular design and structural optimization have been one of the most effective ways to innovate pesticides for integrated insect management. To continue our previous studies on the discovery of insecticidal lead, a series of evodiamine derivatives were designed, synthesized, and evaluated for their insecticidal activities. The bioassay results demonstrated that compounds Ian and Iao exhibited 90 and 80% insecticidal activities against Mythimna separata at 2.5 mg/L, respectively, which were superior to evodiamine (10% at 10 mg/L), matrine (45% at 600 mg/L), and rotenone (30% at 200 mg/L). Compounds Ian-Iap showed 90% insecticidal activities against Plutella xylostella at 1.0 mg/L, far more potent than those of evodiamine, matrine, and rotenone. Compound Ian displayed 60% insecticidal activity against Helicoverpa armigera at 5.0 mg/L, while evodiamine, matrine, and rotenone showed very poor activities. The study on the insecticidal mechanism of action by a calcium imaging experiment indicated that the insect ryanodine receptors (RyRs) could be the potential target of Ian. Furthermore, the molecular docking indicated that Ian anchored in the binding site of the RyR of P. xylostella. The above results manifested the potential of evodiamine derivatives as potent insecticide candidates.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/química , Larva , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas , Rotenona/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...