Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404442, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225354

RESUMO

The small G protein Arf1 has been identified as playing a selective role in supporting cancer stem cells (CSCs), making it an attractive target for cancer therapy. However, the current Arf1 inhibitors have limited translational potential due to their high toxicity and low specificity. In this study, two new potent small-molecule inhibitors of Arf1, identified as DU101 and DU102, for cancer therapy are introduced. Preclinical tumor models demonstrate that these inhibitors triggered a cascade of aging in CSCs and enhance anti-tumor immunity in mouse cancer and PDX models. Through single-cell sequencing, the remodeling of the tumor immune microenvironment induced by these new Arf1 inhibitors is analyzed and an increase in tumor-associated CD8+ CD4+ double-positive T (DPT) cells is identified. These DPT cells exhibit superior features of active CD8 single-positive T cells and a higher percentage of TCF1+PD-1+, characteristic of stem-like T cells. The frequency of tumor-infiltrating stem-like DPT cells correlates with better disease-free survival (DFS) in cancer patients, indicating that these inhibitors may offer a novel cancer immunotherapy strategy by converting the cold tumor immune microenvironment into a hot one, thus expanding the potential for immunotherapy in cancer patients.

2.
Biotechnol Adv ; 77: 108453, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278372

RESUMO

Biomanufacturing, driven by technologies such as synthetic biology, offers significant potential to advance the bioeconomy and promote sustainable development. It is anticipated to transform traditional manufacturing and become a key industry in future strategies. Cell factories are the core of biomanufacturing. The advancement of synthetic biology and growing market demand have led to the production of a greater variety of natural products and increasingly complex metabolic pathways. However, this progress also presents challenges, notably the conflict between natural product production and chassis cell growth. This conflict results in low productivity and yield, adverse side effects, metabolic imbalances, and growth retardation. Enzyme co-localization strategies have emerged as a promising solution. This article reviews recent progress and applications of these strategies in constructing cell factories for efficient natural product production. It comprehensively describes the applications of enzyme-based compartmentalization, metabolic pathway-based compartmentalization, and synthetic organelle-based compartmentalization in improving product titers. The article also explores future research directions and the prospects of combining multiple strategies with advanced technologies.

3.
Front Pharmacol ; 15: 1429071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239647

RESUMO

Objective: This study aimed to assess the efficacy and safety of QiMing granules (QM) in the treatment of patients with diabetic retinopathy (DR). Methods: We systematically searched multiple databases, including Pubmed, Embase, Web of Science, Cochrane Library, SinoMed, Chinese National Knowledge Infrastructure (CNKI), Wanfang database, and VIP database. Randomized controlled trials (RCTs) of QM in the treatment of DR were collected, and the search time limit was from the establishment of the database to 27 March 2024. Two independent researchers were involved in literature screening, data extraction, and bias risk assessment. The risk of bias in the included studies was assessed using the Risk of Bias Assessment tool for randomized controlled trials of Cochrane Collaboration 2.0 (RoB 2.0). The main outcomes were the overall efficacy, visual acuity, retinal circulation time, macular thickness. The secondary outcomes were the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and glycated hemoglobin (HbA1c). The adverse events was considered the safety outcome. Review Manager 5.4.1 and Stata 15.1 were used for meta-analysis. Data were pooled by random-effects or fixed-effects model to obtain the mean difference (MD), risk ratio (RR), and 95% confidence interval (CI). Results: A total of 33 RCTs involving 3,042 patients were included in this study. Overall, we demonstrated that QM had a significant clinical effect on DR. QM alone was superior to conventional treatment (CT) in terms of overall efficacy [RR = 1.45, 95% CI: (1.34, 1.58), p < 0.00001, moderate certainty], retinal circulation time [MD = -0.56, 95% CI: (-1.01, -0.12), p = 0.01] and macular thickness [MD = -11.99, 95% CI: (-23.15, -0.83), p = 0.04]. QM plus CT was superior to CT in terms of overall efficacy [RR = 1.29, 95% CI: (1.24, 1.33), p < 0.00001], visual acuity [MD = 0.14, 95% CI: (0.11, 0.17), p < 0.00001], macular thickness [MD = -14.70, 95% CI: (-21.56, -7.83), p < 0.0001], TG [MD = -0.20, 95% CI: (-0.33, -0.08), p = 0.001, moderate certainty], TC [MD = -0.57, 95% CI: (-1.06, -0.07), p = 0.02], and LDL-C [MD = -0.36, 95% CI: (-0.70, -0.03), p = 0.03]. In terms of safety, the incidence of adverse events in the experimental group was less than that in the control group. The results of the GRADE evidence quality evaluation showed that the evidence quality of outcome indicators was mostly low. Conclusion: QM can effectively improve overall efficacy, visual acuity, macular thickness, retinal circulation time, and reduce the levels of TG, TC, and LDL-C. However, due to the limited number of studies included, a small sample size, and a lack of high-quality literature, the possibility of publication bias cannot be excluded. Moreover, biases are present due to differences in study design, such as the absence of placebo use in the control group and a predominant use of combined intervention designs in the control group, along with deficiencies in allocation concealment and blinding methods. Therefore, more multi-center, large-sample, and rigorously designed studies are needed to substantiate this conclusion. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42023465165.

4.
Heliyon ; 10(11): e32271, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38873671

RESUMO

Background: The antioxidant enzyme GPX3 is a selenoprotein that transports selenium in blood and maintains its levels in peripheral tissues. Aberrant GPX3 expression is strongly linked to the development of some tumors. However, there is a scarcity of studies examining the pan-cancer expression patterns and prognostic relevance of GPX3. Methods: GPX3 expression levels in normal tissues and multiple tumors were analyzed using TCGA, CCLE, GTEx, UALCAN and HPA databases. Forest plots and KM survival curves were utilized to evaluate the correlation between GPX3 expression and the outcome of tumor patients. The prognostic value of GPX3 in LGG was assessed utilizing the CGGA datasets, and that in STAD was tested by TCGA and GEO databases. A nomogram was then constructed to predict OS in STAD using R software. Additionally, the impact of GPX3 on post-chemoradiotherapy OS in patients with LGG and STAD was evaluated using the KM method. The multiplicative interaction of GPX3 expression, chemotherapy and radiotherapy on STAD and LGG was analyzed using logistic regression models. The correlation of GPX3 with the immune infiltration, immune neoantigens and MMR genes were investigated in TCGA cohort. Results: GPX3 exhibited downregulation across 21 tumor types, including STAD, with its decreased expression significantly associated with improved OS, DFS, PFS and DSS. Conversely, in LGG, low levels of GPX3 expression were indicative of a poorer prognosis. Univariate and multivariate Cox models further identified GPX3 as an independent predictor of STAD, and a nomogram based on GPX3 expression and other independent factors showed high level of predictive accuracy. Moreover, low GPX3 expression and chemotherapy prolonged the survival of STAD. In LGG patients, chemoradiotherapy, GPX3 and chemotherapy, and GPX3 and chemoradiotherapy may improve prognosis. Our observations reveal a notable connection between GPX3 and immune infiltration, immune neoantigens, and MMR genes. Conclusions: The variations in GPX3 expression are linked to the controlling tumor development and could act as a promising biomarker that impacts the prognosis of specific cancers like STAD and LGG.

5.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1223-1232, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886420

RESUMO

The radial growth of trees plays a crucial role in determining forest carbon sequestration capacity. Understanding the growth dynamics of trees and their response to environmental factors is essential for predicting forest's carbon sink potential under future climate change. Coniferous forest trees are particularly sensitive to climate change, with growth dynamics responding rapidly to environmental shifts. We collected and analyzed data from 99 papers published between 1975 and 2023, and examined the effects of exogenous factors (such as temperature, water, and photoperiod) and endogenous factors (including tree age and species) on cambial activity and radial growth in conifers. We further explored the mechanisms underlying these effects. The results showed that climate warming had the potential to advance the onset while delayed the end of xylem differentiation stages in conifers in temperate and boreal regions. Water availability played a crucial role in regulating the timing of cambial phenology and wood formation by influencing water potential and cell turgor. Additionally, the photoperiod not only participated in regulating the start and end times of growth, but also influenced the timing of maximum growth rate occurrence. Future climate warming was expected to extend the growing season, leading to increase in growth of conifers in boreal regions and expanding forests to higher altitudes or latitudes. However, changes in precipitation patterns and increased evapotranspiration resulting from temperature increases might advance the end of growing season and reduce growth rate in arid areas. To gain a more comprehensive understanding of the relationship between radial growth and climatic factors, it is necessary to develop process-based models to elucidate the physiological mechanisms underlying wood formation and the response of trees to climatic factors.


Assuntos
Câmbio , Mudança Climática , Traqueófitas , Câmbio/crescimento & desenvolvimento , Traqueófitas/crescimento & desenvolvimento , Traqueófitas/fisiologia , Ecossistema , Sequestro de Carbono
6.
Cell Chem Biol ; 31(6): 1203-1218.e17, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906111

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the biosynthesis of nicotinamide adenine dinucleotide (NAD+), making it a potential target for cancer therapy. Two challenges hinder its translation in the clinic: targeting the extracellular form of NAMPT (eNAMPT) remains insufficient, and side effects are observed in normal tissues. We previously utilized proteolysis-targeting chimera (PROTAC) to develop two compounds capable of simultaneously degrading iNAMPT and eNAMPT. Unfortunately, the pharmacokinetic properties were inadequate, and toxicities similar to those associated with traditional inhibitors arose. We have developed a next-generation PROTAC molecule 632005 to address these challenges, demonstrating exceptional target selectivity and bioavailability, improved in vivo exposure, extended half-life, and reduced clearance rate. When combined with nicotinic acid, 632005 exhibits safety and robust efficacy in treating NAPRT-deficient pan-cancers, including xenograft models with hematologic malignancy and prostate cancer and patient-derived xenograft (PDX) models with liver cancer. Our findings provide clinical references for patient selection and treatment strategies involving NAMPT-targeting PROTACs.


Assuntos
Antineoplásicos , Niacina , Nicotinamida Fosforribosiltransferase , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Humanos , Animais , Niacina/química , Niacina/farmacologia , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Masculino , Proteólise/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Citocinas/metabolismo , Linhagem Celular Tumoral , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
7.
ACS Synth Biol ; 13(6): 1647-1662, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38860708

RESUMO

Monoterpenoids are an important subclass of terpenoids that play important roles in the energy, cosmetics, pharmaceuticals, and fragrances fields. With the development of biotechnology, microbial synthesis of monoterpenoids has received great attention. Yeasts such Saccharomyces cerevisiae and Yarrowia lipolytica are emerging as potential hosts for monoterpenoids production because of unique advantages including rapid growth cycles, mature gene editing tools, and clear genetic background. Recently, advancements in metabolic engineering and fermentation engineering have significantly enhanced the accumulation of monoterpenoids in cell factories. First, this review introduces the biosynthetic pathway of monoterpenoids and comprehensively summarizes the latest production strategies, which encompass enhancing precursor flux, modulating the expression of rate-limited enzymes, suppressing competitive pathway flux, mitigating cytotoxicity, optimizing substrate utilization, and refining the fermentation process. Subsequently, this review introduces four representative monoterpenoids. Finally, we outline the future prospects for efficient construction cell factories tailored for the production of monoterpenoids and other terpenoids.


Assuntos
Engenharia Metabólica , Monoterpenos , Saccharomyces cerevisiae , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Monoterpenos/metabolismo , Fermentação , Vias Biossintéticas/genética , Terpenos/metabolismo , Edição de Genes/métodos
8.
Crit Rev Biotechnol ; : 1-16, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705840

RESUMO

5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.

9.
Eur J Med Chem ; 272: 116499, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38759457

RESUMO

The Mnk-eIF4E axis plays a crucial role in tumor development, and inhibiting Mnk kinases is a promising approach for cancer therapy. Starting with fragment WS23, a series of 4-(indolin-1-yl)-6-substituted-pyrido[3,2-d]pyrimidine derivatives were designed and synthesized. Among these derivatives, compound 15b showed the highest potency with IC50 values of 0.8 and 1.5 nM against Mnk1 and Mnk2, respectively. Additionally, it demonstrated good selectivity among 30 selected kinases. 15b significantly suppressed MOLM-13 and K562 cell lines growth and caused cell cycle arrest. Furthermore, the Western blot assay revealed that 15b effectively downregulated the downstream proteins p-eIF4E, Mcl-1, and c-myc. Additionally, 15b exhibited remarkable stability in rat plasma and rat and human microsomes. In vivo anti-tumor activity study suggested that treatment with 15b suppressed tumor growth in LL/2 syngeneic models. These findings highlight the potential of 15b as a novel and potent Mnks inhibitor, which deserves further investigation.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Pirimidinas , Humanos , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1113-1121, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621918

RESUMO

This study systematically collected, analyzed, and evaluated randomized controlled trial(RCT) in the treatment of diabetic foot ulcer(DFU). The aim as provide references for future studies and to enhance the application of clinical evidence. The RCT of DFU treated with Chinese Patent Medicine was obtained and analyzed using the AI-Clinical Evidence Database of Chinese Patent Medicine(AICED-CPM). The analysis was supplemented with data from CNKI, Wanfang, VIP, SinoMed, PubMed, EMbase, Cochrane Library, and Web of Science. A total of 275 RCTs meeting the requirements were retrieved, with only 7 of them having a sample size of 200 or more. These trials involved 66 different Chinese patent medicine including 25 oral medications, 24 Chinese herbal injections, and 17 external drugs. Among the 33 different intervention/control designs identified, the most common design was Chinese patent medicine + conventional treatment vs conventional treatment(86 cases, 31.27%). Out of the 275 articles included in the literature, 50 did not provide information on the specific course of treatment(18.18%). A total of 10 counting indicators(with a frequency of 426) and 36 measuring indicators(with a frequency of 962) were utilized. The methodological quality of the RCT for the treatment of DFU with Chinese patent medicine was found to be low, with deficiencies in blind methods, other bias factors, study registration, and sample size estimation. There were noticeable shortcomings in the reporting of allocation hiding and implementation bias(blind method application). More studies should prioritize trial registration, program design, and strict quality control during implementation to provide valuable data for clinical practice and serve as a reference for future investigations.


Assuntos
Diabetes Mellitus , Pé Diabético , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Diabetes Mellitus/tratamento farmacológico , Pé Diabético/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos sem Prescrição/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Front Physiol ; 15: 1297810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434138

RESUMO

Diabetic foot ulcers (DFU) and cutaneous lupus erythematosus (CLE) are both diseases that can seriously affect a patient's quality of life and generate economic pressure in society. Symptomatically, both DLU and CLE exhibit delayed healing and excessive inflammation; however, there is little evidence to support a molecular and cellular connection between these two diseases. In this study, we investigated potential common characteristics between DFU and CLE at the molecular level to provide new insights into skin diseases and regeneration, and identify potential targets for the development of new therapies. The gene expression profiles of DFU and CLE were obtained from the Gene Expression Omnibus (GEO) database and used for analysis. A total of 41 common differentially expressed genes (DEGs), 16 upregulated genes and 25 downregulated genes, were identified between DFU and CLE. GO and KEGG analysis showed that abnormalities in epidermal cells and the activation of inflammatory factors were both involved in the occurrence and development of DFU and CLE. Protein-protein interaction network (PPI) and sub-module analysis identified enrichment in seven common key genes which is KRT16, S100A7, KRT77, OASL, S100A9, EPGN and SAMD9. Based on these seven key genes, we further identified five miRNAs(has-mir-532-5p, has-mir-324-3p,has-mir-106a-5p,has-mir-20a-5p,has-mir-93-5p) and7 transcription factors including CEBPA, CEBPB, GLI1, EP30D, JUN,SP1, NFE2L2 as potential upstream molecules. Functional immune infiltration assays showed that these genes were related to immune cells. The CIBERSORT algorithm and Pearson method were used to determine the correlations between key genes and immune cells, and reverse key gene-immune cell correlations were found between DFU and CLE. Finally, the DGIbd database demonstrated that Paquinimod and Tasquinimod could be used to target S100A9 and Ribavirin could be used to target OASL. Our findings highlight common gene expression characteristics and signaling pathways between DFU and CLE, indicating a close association between these two diseases. This provides guidance for the development of targeted therapies and mutual interactions.

12.
Chin J Nat Med ; 22(2): 171-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38342569

RESUMO

This study reports the isolation of four new ß-carboline alkaloids (1-4) and six previously identified alkaloids (5-10) from the roots of Peganum harmala L. Among these compounds, 1 and 2 were characterized as rare ß-carboline-quinazoline dimers exhibiting axial chirality. Compound 3 possessed a unique 6/5/6/7 tetracyclic ring system with an azepine ring, and compound 4 was a novel annomontine ß-carboline. The structures of these compounds were elucidated by spectroscopic data and quantum mechanical calculations. The biosynthetic pathways of 1-3 were proposed. Additionally, the cytotoxicity of some isolates against four cancer cell lines (HL-60, A549, MDA-MB-231, and DU145) was evaluated. Notably, compound 4 exhibited significant cytotoxicity against HL-60, A549, and DU145 cells with IC50 values of 12.39, 12.80, and 30.65 µmol·L-1, respectively. Furthermore, compound 2 demonstrated selective cytotoxicity against HL-60 cells with an IC50 value of 17.32 µmol·L-1.


Assuntos
Alcaloides , Peganum , Humanos , Peganum/química , Peganum/metabolismo , Alcaloides/química , Carbolinas/química , Células HL-60
13.
Front Immunol ; 15: 1338680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415245

RESUMO

T cell senescence is an indication of T cell dysfunction. The ability of senescent T cells to respond to cognate antigens is reduced and they are in the late stage of differentiation and proliferation; therefore, they cannot recognize and eliminate tumor cells in a timely and effective manner, leading to the formation of the suppressive tumor microenvironment. Establishing methods to reverse T cell senescence is particularly important for immunotherapy. Aging exacerbates profound changes in the immune system, leading to increased susceptibility to chronic, infectious, and autoimmune diseases. Patients with malignant lung tumors have impaired immune function with a high risk of recurrence, metastasis, and mortality. Immunotherapy based on PD-1, PD-L1, CTLA-4, and other immune checkpoints is promising for treating lung malignancies. However, T cell senescence can lead to low efficacy or unsuccessful treatment results in some immunotherapies. Efficiently blocking and reversing T cell senescence is a key goal of the enhancement of tumor immunotherapy. This study discusses the characteristics, mechanism, and expression of T cell senescence in malignant lung tumors and the treatment strategies.


Assuntos
Neoplasias Pulmonares , Humanos , Senescência de Células T , Linfócitos T , Imunoterapia/métodos , Envelhecimento , Microambiente Tumoral
14.
Enzyme Microb Technol ; 175: 110407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341913

RESUMO

Due to the extreme living conditions, extremophiles have unique characteristics in morphology, structure, physiology, biochemistry, molecular evolution mechanism and so on. Extremophiles have superior growth and synthesis capabilities under harsh conditions compared to conventional microorganisms, allowing for unsterilized fermentation processes and thus better performance in low-cost production. In recent years, due to the development and optimization of molecular biology, synthetic biology and fermentation technology, the identification and screening technology of extremophiles has been greatly improved. In this review, we summarize techniques for the identification and screening of extremophiles and review their applications in industrial biotechnology in recent years. In addition, the facts and perspectives gathered in this review suggest that next-generation industrial biotechnology (NGIBs) based on engineered extremophiles holds the promise of simplifying biofuturing processes, establishing open, non-sterilized continuous fermentation production systems, and utilizing low-cost substrates to make NGIBs attractive and cost-effective bioprocessing technologies for sustainable manufacturing.


Assuntos
Extremófilos , Extremófilos/genética , Biotecnologia/métodos , Fermentação
15.
Synth Syst Biotechnol ; 9(1): 159-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38333054

RESUMO

Gibberellic acid (GA3) is a vital plant growth hormone widely used in agriculture. Currently, GA3 production relies on liquid fermentation by the filamentous fungus Fusarium fujikuroi. However, the lack of an effective selection marker recycling system hampers the application of metabolic engineering technology in F. fujikuroi, as multiple-gene editing and positive-strain screening still rely on a limited number of antibiotics. In this study, we developed a strategy using pyr4-blaster and CRISPR/Cas9 tools for recycling orotidine-5'-phosphate decarboxylase (Pyr4) selection markers. We demonstrated the effectiveness of this method for iterative gene integration and large gene-cluster deletion. We also successfully improved GA3 titers by overexpressing geranylgeranyl pyrophosphate synthase and truncated 3-hydroxy-3-methyl glutaryl coenzyme A reductase, which rewired the GA3 biosynthesis pathway. These results highlight the efficiency of our established system in recycling selection markers during iterative gene editing events. Moreover, the selection marker recycling system lays the foundation for further research on metabolic engineering for GA3 industrial production.

16.
Nat Struct Mol Biol ; 31(1): 54-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177672

RESUMO

THEMIS plays an indispensable role in T cells, but its mechanism of action has remained highly controversial. Using the systematic proximity labeling methodology PEPSI, we identify THEMIS as an uncharacterized substrate for the phosphatase SHP1. Saturated mutagenesis assays and mass spectrometry analysis reveal that phosphorylation of THEMIS at the evolutionally conserved Tyr34 residue is oppositely regulated by SHP1 and the kinase LCK. Similar to THEMIS-/- mice, THEMISY34F/Y34F knock-in mice show a significant decrease in CD4 thymocytes and mature CD4 T cells, but display normal thymic development and peripheral homeostasis of CD8 T cells. Mechanistically, the Tyr34 motif in THEMIS, when phosphorylated upon T cell antigen receptor activation, appears to act as an allosteric regulator, binding and stabilizing SHP1 in its active conformation, thus ensuring appropriate negative regulation of T cell antigen receptor signaling. However, cytokine signaling in CD8 T cells fails to elicit THEMIS Tyr34 phosphorylation, indicating both Tyr34 phosphorylation-dependent and phosphorylation-independent roles of THEMIS in controlling T cell maturation and expansion.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Timócitos , Camundongos , Animais , Camundongos Knockout , Timócitos/metabolismo , Receptores de Antígenos de Linfócitos T , Transdução de Sinais
17.
Bioresour Technol ; 394: 130299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185446

RESUMO

Gibberellic acid (GA3), produced industrially by Fusarium fujikuroi, stands as a crucial plant growth regulator extensively employed in the agriculture filed while limited understanding of the global metabolic network hinders researchers from conducting rapid targeted modifications. In this study, a small-molecule compounds-based targeting technology was developed to increase GA3 production. Firstly, various small molecules were used to target key nodes of different pathways and the result displayed that supplement of terbinafine improved significantly GA3 accumulation, which reached to 1.08 g/L. Subsequently, lipid and squalene biosynthesis pathway were identified as the key pathways influencing GA3 biosynthesis by transcriptomic analysis. Thus, the strategies including in vivo metabolic engineering modification and in vitro supplementation of lipid substrates were adopted, both contributed to an enhanced GA3 yield. Finally, the engineered strain demonstrated the ability to achieve a GA3 yield of 3.24 g/L in 5 L bioreactor when utilizing WCO as carbon source and feed.


Assuntos
Fusarium , Giberelinas , Fermentação , Fusarium/genética , Fusarium/química , Reatores Biológicos , Lipídeos
18.
Biosens Bioelectron ; 248: 115972, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171222

RESUMO

Enzymes, as biocatalysts, play a cumulatively important role in environmental purification and industrial production of chemicals and pharmaceuticals. However, natural enzymes are limited by their physiological properties in practice, which need to be modified driven by requirements. Screening and isolating certain enzyme variants or ideal industrial strains with high yielding of target product enzymes is one of the main directions of enzyme engineering research. Droplet-based high-throughput screening (DHTS) technology employs massive monodisperse emulsion droplets as microreactors to achieve single strain encapsulation, as well as continuous monitoring for the inside mutant library. It can effectively sort out strains or enzymes with desired characteristics, offering a throughput of 108 events per hour. Much of the early literature focused on screening various engineered strains or designing signalling sorting strategies based on DHTS technology. However, the field of enzyme engineering lacks a comprehensive overview of advanced methods for microfluidic droplets and their cutting-edge developments in generation and manipulation. This review emphasizes the advanced strategies and frontiers of microfluidic droplet generation and manipulation facilitating enzyme engineering development. We also introduce design for various screening signals that cooperate with DHTS and devote to enzyme engineering.


Assuntos
Técnicas Biossensoriais , Ensaios de Triagem em Larga Escala , Ensaios de Triagem em Larga Escala/métodos , Microfluídica/métodos
19.
Trends Biotechnol ; 42(4): 397-401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37953082

RESUMO

Cell-laden droplet microfluidics has revolutionized bulk biochemical analysis by offering compartmentalized microreactors for individual cells, but downstream operations of regular aqueous droplets are limited. Hydrogel matrix can provide a rigid scaffold for long-term culture of eukaryotic and prokaryotic cells, and can support several manipulations, facilitating subsequent high-throughput analysis of cellular heterogeneity.


Assuntos
Microgéis , Microfluídica , Hidrogéis , Células Imobilizadas
20.
Crit Rev Biotechnol ; 44(3): 337-351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36779332

RESUMO

ß-Carotene is one kind of the most important carotenoids. The major functions of ß-carotene include the antioxidant and anti-cardiovascular properties, which make it a growing market. Recently, the use of metabolic engineering to construct microbial cell factories to synthesize ß-carotene has become the latest model for its industrial production. Among these cell factories, yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica have attracted the most attention because of the: security, mature genetic manipulation tools, high flux toward carotenoids using the native mevalonate pathway and robustness for large-scale fermentation. In this review, the latest strategies for ß-carotene biosynthesis, including protein engineering, promoters engineering and morphological engineering are summarized in detail. Finally, perspectives for future engineering approaches are proposed to improve ß-carotene production.


Assuntos
Engenharia Metabólica , Yarrowia , beta Caroteno/genética , beta Caroteno/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Saccharomyces cerevisiae/genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA