Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Small ; : e2401253, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713154

RESUMO

Hydrogen peroxide (H2O2) has emerged as a kind of multi-functional green oxidants with extensive industrial utility. Oxidized carbon materials exhibit promises as electrocatalysts in the two-electron (2e-) oxygen reduction reaction (ORR) for H2O2 production. However, the precise identification and fabrication of active sites that selectively yield H2O2 present a serious challenge. Herein, a structural engineering strategy is employed to synthesize oxygen-doped carbon quantum dots (o-CQD) for the 2e- ORR. The surface electronic structure of the o-CQDs is systematically modulated by varying isomerization precursors, thereby demonstrating excellent electrocatalyst performance. Notably, o-CQD-3 emerges as the most promising candidate, showcasing a remarkable H2O2 selectivity of 96.2% (n = 2.07) at 0.68 V versus RHE, coupled with a low Tafel diagram of 66.95 mV dec-1. In the flow cell configuration, o-CQD-3 achieves a H2O2 productivity of 338.7 mmol gcatalyst -1 h-1, maintaining consistent production stability over an impressive 120-hour duration. Utilizing in situ technology and density functional theory calculations, it is unveil that edge sites of o-CQD-3 are facilely functionalized by C-O-C groups under alkaline ORR conditions. This isomerization engineering approach advances the forefront of sustainable catalysis and provides a profound insight into the carbon-based catalyst design for environmental-friendly chemical synthesis processes.

2.
Adv Sci (Weinh) ; : e2403607, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728594

RESUMO

Graphitic carbon nitride (CN), as a nonmetallic photocatalyst, has gained considerable attention for its cost-effectiveness and environmentally friendly nature in catalyzing solar-driven CO2 conversion into valuable products. However, the photocatalytic efficiency of CO2 reduction with CN remains low, accompanied by challenges in achieving desirable product selectivity. To address these limitations, a two-step hydrothermal-calcination tandem synthesis strategy is presented, introducing carbon quantum dots (CQDs) into CN and forming ultra-thin CQD/CN nanosheets. The integration of CQDs induces a distinct work function with CN, creating a robust interface electric field after the combination. This electric field facilitates the accumulation of photoelectrons in the CQDs region, providing an abundant source of reduced electrons for the photocatalytic process. Remarkably, the CQD/CN nanosheets exhibit an average CO yield of 120 µmol g-1, showcasing an outstanding CO selectivity of 92.8%. The discovery in the work not only presents an innovative pathway for the development of high-performance photocatalysts grounded in non-metallic CN materials employing CQDs but also opens new avenues for versatile application prospects in environmental protection and sustainable cleaning energy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38767933

RESUMO

Highly efficient electrochemical CO2-to-CO conversion is a promising approach for achieving carbon neutrality. While nonmetallic carbon electrocatalysts have shown potential for CO2-to-CO utilization in H-type cells, achieving efficient conversion in flow cells at an industrial scale remains challenging. In this study, we present a cost-effective synthesis strategy for preparing ultrathin 2D carbon nanosheet catalysts through simple amine functionalization. The optimized catalyst, NCNs-2.5, demonstrates exceptional CO selectivity with a maximum Faradaic efficiency of 98% and achieves a high current density of 55 mA cm-2 in a flow cell. Furthermore, the catalyst exhibits excellent long-term stability, operating continuously for 50 h while maintaining a CO selectivity above 90%. The superior catalytic activity of NCNs-2.5 is attributed to the presence of amine-N active sites within the carbon lattice structure. This work establishes a foundation for the rational design of cost-effective nonmetallic carbon catalysts as sustainable alternatives to metals in energy conversion systems.

4.
Chem Commun (Camb) ; 60(36): 4793-4796, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38602273

RESUMO

By incorporating the electron-rich naphthalene and electron-deficient triazine as an electron donor and an electron acceptor, a new donor-acceptor covalent organic framework as an electron distribution regulator was obtained for boosting photocatalytically oxidative coupling of benzylamines and selective oxidation of thioethers under the irradiation of green light (520 nm).

5.
Small ; : e2311132, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511553

RESUMO

Metal phthalocyanine molecules with Me-N4 centers have shown promise in electrocatalytic CO2 reduction (eCO2R) for CO generation. However, iron phthalocyanine (FePc) is an exception, exhibiting negligible eCO2R activity due to a higher CO2 to *COOH conversion barrier and stronger *CO binding energy. Here, amine functional groups onto atomic-Fe-rich carbon dots (Af-Fe-CDs) are introduced via a one-step solvothermal molecule fusion approach. Af-Fe-CDs feature well-defined Fe-N4 active sites and an impressive Fe loading (up to 8.5 wt%). The synergistic effect between Fe-N4 active centers and electron-donating amine functional groups in Af-Fe-CDs yielded outstanding CO2-to-CO conversion performance. At industrial-relevant current densities exceeding 400 mA cm-2 in a flow cell, Af-Fe-CDs achieved >92% selectivity, surpassing state-of-the-art CO2-to-CO electrocatalysts. The in situ electrochemical FTIR characterization combined with theoretical calculations elucidated that Fe-N4 integration with amine functional groups in Af-Fe-CDs significantly reduced energy barriers for *COOH intermediate formation and *CO desorption, enhancing eCO2R efficiency. The proposed synergistic effect offers a promising avenue for high-efficiency catalysts with elevated atomic-metal loadings.

6.
BMJ Open ; 13(12): e079341, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38070919

RESUMO

OBJECTIVES: To use a nomogram to predict the risk of mortality and estimate the impact of current treatment on the prognosis of glioma patients. METHODS: A total of 3798 cases were obtained from the Surveillance Epidemiology and End Results database according to the selection criteria. A nomogram was built on the independent clinical factors screened by the variance inflation factor, univariate analyses and a multivariate Cox regression model. Then, categorising the overall population into high-risk, medium-risk and low-risk groups using nomogram-derived risk scores, to study the impact of treatment on different subgroups' survival outcomes. Furthermore, based on the postmatch cohorts, the influences of treatment on survival outcomes were assessed by the log-rank test. RESULT: Age, race, stage of disease, histological type, histological grade, surgery, radiotherapy and chemotherapy were identified as the independent prognostic factors. A nomogram with good discrimination and consistency was built. Generally, the patients who underwent surgery, radiotherapy and chemotherapy were more likely to achieve better prognosis than those who did not, except for those who received radiotherapy in the low-risk cohort and those who underwent surgery in the high-risk cohort. Furthermore, the isocitrate dehydrogenase 1/2 (IDH1/2) wild-type patients with surgery, radiotherapy or chemotherapy tended to have higher survival probabilities, while some inconsistent results were observed in the IDH mutant-type cohort. CONCLUSION: Surgery, radiotherapy and chemotherapy improved the prognosis, while appropriate selection of topical treatment for the low-risk or high-risk patients deserves further consideration. IDH status gene might be a reliable indicator of therapeutic effectiveness.


Assuntos
Glioma , Insuflação , Radioterapia (Especialidade) , Humanos , Nomogramas , Bases de Dados Factuais , Glioma/terapia , Prognóstico
7.
Front Neurol ; 14: 1249914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780715

RESUMO

Objective: This study aimed to explore the hemodynamic changes before and after anastomosis in patients with Moyamoya disease (MMD) using multiple models. Methods: We prospectively enrolled 42 MMD patients who underwent combined revascularization. Intraoperative FLOW800 was performed before and after anastomosis, and parameters was collected, including maximum intensity, delay time, rise time, slope, blood flow index, and microvascular transit time (MVTT). Additionally, preoperative and postoperative hemodynamic parameters were measured using color Doppler ultrasonography (CDUS), including peak systolic velocity, end-diastolic velocity, resistance index (RI), pulsatility index (PI), and flow volume. Subsequently, the correlation between FLOW800 and CDUS parameters was explored. Results: A total of 42 participants took part with an average age of 46.5 years, consisting of 19 men and 23 women. The analysis of FLOW800 indicated that both the delay time and rise time experienced a substantial decrease in both the recipient artery and vein. Additionally, the MVTT was found to be significantly reduced after the surgery (5.7 ± 2.2 s vs. 4.9 ± 1.6, p = 0.021). However, no statistically significant differences were observed among the other parameters. Similarly, all postoperative parameters in CDUS hemodynamics exhibited significant alterations in comparison to the preoperative values. The correlation analysis between FLOW800 and CDUS parameters indicated a significant association between MVTT and RI and PI, no significant relationships were found among the other parameters in the two groups. Conclusion: The hemodynamic outcomes of the donor and recipient arteries demonstrated significant changes following bypass surgery. The parameter of time appears to be more precise and sensitive in assessing hemodynamics using FLOW800. Multiple evaluations of hemodynamics could offer substantial evidence for perioperative management.

8.
Nanomicro Lett ; 15(1): 217, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768413

RESUMO

The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide (2H-MoS2) presents a significant hurdle in realizing its full potential applications. Here, we utilize theoretical calculations to predict possible functionalized graphene quantum dots (GQDs), which can enhance HER activity of bulk MoS2. Subsequently, we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS2 nanosheets mediated with GQDs (ALQD) by modulating the concentration of electron withdrawing/donating functional groups. Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role. Notably, the higher the concentration and strength of electron-withdrawing functional groups on GQDs, the thinner and more active the resulting ALQD are. Remarkably, the synthesized near atom-layer ALQD-SO3 demonstrate significantly improved HER performance. Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS2. Furthermore, it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.

9.
J Phys Chem Lett ; 14(38): 8485-8492, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721763

RESUMO

Disulfide bridges common in proteins show excellent photostability achieved by ultrafast internal conversion and maintain the stability of the tertiary structure. When disulfide bonds exist in aromatic compounds, the rigid chemical structure may affect the cleavage and reforming dynamics of disulfide bonds. In this work, a model compound with a disulfide five-membered-ring structure, 4,5-dithiolo-N-(2,6-dimethylphenyl)-1,8-naphthalimide (DTDPNI), is selected to elaborate the effect of disulfide modification on the excited-state deactivation mechanism. Quantum chemical calculations show that the S-S stretching leads to a dramatic decrease in the energy gap between the S1 and S0 states, similar to the situation in 1,2-dithiane. Due to the efficient nonradiative process, the excited-state lifetime of DTDPNI resolved by ultrafast spectroscopy is determined to be ∼20 ps. It is found that the excellent photostability is achieved by ultrafast excited-state quenching induced by the S-S stretching, rather than the cleavage of the disulfide bond; even the disulfide bridge is in a very rigid aromatic molecular system.

10.
Mater Horiz ; 10(11): 4930-4939, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37609896

RESUMO

Recently, it was reported that an in-plane graphene (G)/hexagonal boron nitride (h-BN) (G/h-BN) heterostructure provided the catalytic activity for H2O2 synthesis by the 2 e- oxygen reduction reaction (ORR). However, there are few reports on the vertically stacked G/h-BN heterostructure, which refers to the stacking of graphene domains on the surface of h-BN. Herein, a simulated chemical vapor deposition method is proposed for fabricating a heterostructure of abundant vertically stacked G/h-BN by in situ growing graphene quantum dots (GQDs) on porous h-BN sheets. The performance of our vertically stacked heterostructure catalyst is superior to that of reported carbon-based electrocatalysts under an alkaline environment, with an H2O2 selectivity of 90-99% in a wide potential range (0.35 V-0.7 V vs. RHE), over 90% faradaic efficiency, and high mass activity of 1167 mmol gcatalyst-1 h-1. The experimental results and density functional theory (DFT) simulation verified that the vertically stacked heterostructure exhibits an excellent catalytic performance for the 2 e- ORR, and the edge B atoms in the B-centered AB stacking model are the most active catalytic sites. This research adequately demonstrates the promising catalytic activity of the vertically stacked G/h-BN heterostructure and provides a facile route for fabricating other vertically stacked heterostructures.

11.
Nat Commun ; 14(1): 5178, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620331

RESUMO

Manipulating the tumor immune contexture towards a more active state can result in better therapeutic outcomes. Here we describe an easily accessible bacterial biomineralization-generated immunomodulator, which we name Ausome (Au + [exo]some). Ausome comprises a gold nanoparticle core covered by bacterial components; the former affords an inducible hyperthermia effect, while the latter mobilizes diverse immune responses. Multiple pattern recognition receptors actively participate in Ausome-initiated immune responses, which lead to the release of a broad spectrum of pro-inflammatory cytokines and the activation of effector immune cells. Upon laser irradiation, tumor-accumulated Ausome elicits a hyperthermic response, which improves tissue blood perfusion and contributes to enhanced infiltration of immunostimulatory modules, including cytokines and effector lymphocytes. This immune-modulating strategy mediated by Ausome ultimately brings about a comprehensive immune reaction and selectively amplifies the effects of local antitumor immunity, enhancing the efficacy of well-established chemo- or immuno-therapies in preclinical cancer models in female mice.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Neoplasias , Feminino , Animais , Camundongos , Ouro , Nanopartículas Metálicas/uso terapêutico , Hipertermia , Receptores Toll-Like , Neoplasias/terapia , Citocinas , Imunidade
12.
Materials (Basel) ; 16(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629946

RESUMO

Selective laser melting (SLM) of high-temperature alloys involves intricate interdependencies among key process parameters, such as laser power and scanning speed, affecting properties such as density and tensile strength. However, relying solely on experiential knowledge for process parameter design often hampers the precise attainment of target requirements. To address this challenge, we propose an innovative approach that integrates the analytic hierarchy process (AHP) and weighted particle swarm optimization (WPSO) to recommend SLM process parameters for high-temperature alloy fabrication. Our proposed AHP-WPSO model consists of three main steps. First, a comprehensive historical database is established, capturing the process parameters and performance metrics of high-temperature alloy SLM parts. Utilizing an AHP framework, we compute the performance similarity between target and historical cases, applying rational thresholds to identify analogous cases. When suitable analogs are elusive, the model seamlessly transitions to the second step. Here, the WPSO model optimizes and recommends process parameters according to target specifications. Lastly, our experimental validation of the GH4169 high-temperature alloy through SLM experiments corroborates the effectiveness of our AHP-WPSO model in making process parameter recommendations. The outcomes underscore the model's high accuracy, attaining a recommendation precision of 99.81% and 96.32% when historical analogs are present and absent, respectively. This innovative approach offers a robust and reliable solution to the challenges posed in SLM process parameter optimization for high-temperature alloy applications.

13.
Nano Lett ; 23(15): 7001-7007, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493432

RESUMO

The rapid photobleaching of near-infrared (NIR) dye-sensitized upconversion nanosystems is one of the crucial problems that has blocked their technological applications. Uncovering the photophysical and photochemical pathways of NIR dyes would help to elucidate the photobleaching mechanism and thereby improve the photostability of the system. Here we investigate the triplet dynamics of NIR dyes and their interaction with triplet oxygen in the typically investigated IR806-sensitized upconversion nanoparticle (UCNP) nanosystem. Low-temperature fluorescence at 77 K provides direct proof of the generation of singlet oxygen (1O2) under 808 nm laser irradiation. Mass spectrometry indicates that all three double bonds in the structure of IR806 can be broken in the photochemical process. Coupling IR806 to the surface of UCNPs can accelerate its triplet dynamics, thus producing more 1O2 to photocleave IR806. Importantly, we find that the addition of ß-carotene can scavenge the generated 1O2, thereby providing a simple method to effectively inhibit photobleaching.

14.
ACS Appl Mater Interfaces ; 15(28): 33868-33877, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417929

RESUMO

This study investigates the mechanism behind the enhanced photocatalytic performance of carbon quantum dot (CQD)-induced photocatalysts. Red luminescent CQDs (R-CQDs) were synthesized using a microwave ultrafast synthesis strategy, exhibiting similar optical and structural properties but varying in surface functional group sites. Model photocatalysts were synthesized by combining R-CQDs with graphitic carbon nitride (CN) using a facile coupling technique, and the effects of different functionalized R-CQDs on CO2 reduction were investigated. This coupling technique narrowed the band gap of R1-CQDs/CN, made the conduction band potentials more negative, and made photogenerated electrons and holes less likely to recombine. These improvements greatly enhanced the deoxygenation ability of the photoinduced carriers, increased light absorption of solar energy, and raised the carrier concentration, resulting in excellent stability and remarkable CO production. R1-CQDs/CN demonstrated the highest photocatalytic activity, with CO production up to 77 µmol g-1 within 4 h, which is approximately 5.26 times higher than that of pure CN. Our results suggest that the superior photocatalytic performance of R1-CQDs/CN arises from its strong internal electric field and high Lewis acidity and alkalinity, attributed to the abundant pyrrolic-N and oxygen-containing surface groups, respectively. These findings offer a promising strategy for producing efficient and sustainable CQD-based photocatalysts to address global energy and environmental problems.

15.
Phys Chem Chem Phys ; 25(36): 24386-24394, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37283300

RESUMO

Boron-dipyrromethene (BODIPY) derivatives are prospective organic-based triplet photosensitizers. Since the triplet generation yield of the parent BODIPY is low, heavy atoms are widely used to improve the triplet yield. However, the dimerization of BODIPYs can also significantly improve their ability to produce triplets. Through a comparative study of the triplet formation dynamics of two heavy-atom-free orthogonal covalent BODIPY heterodimers that differ in their dihedral angles, we have demonstrated that the mechanism of spin-orbit charge-transfer intersystem crossing (SOCT-ISC) promotes the triplet generation of BODIPY heterodimers in solution. Different from the general understanding of SOCT-ISC, the heterodimer with a smaller dihedral angle and low structural rigidity showed better triplet generation due to (a) the stronger inter-chromophoric interaction in the heterodimer, which promoted the formation of a solvent-stabilized charge-transfer (CT) state, (b) the more favorable energy level alignment with sizeable spin-orbit coupling strength, and (c) the balance between the stabilized singlet CT state and limited direct charge recombination to the ground state in a weakly polar solvent. The complete spectral characterization of the triplet formation dynamics clarified the SOCT-ISC mechanism and important factors affecting the triplet generation in BODIPY heterodimers.

16.
Small ; 19(43): e2303156, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376814

RESUMO

The development of cost-effective and reliable metal-free carbon-based electrocatalysts has gained significant attention for electrochemical hydrogen peroxide (H2 O2 ) generation through a two-electron oxygen reduction reaction. In this study, a scalable solvent engineering strategy is employed to fabricate oxygen-doped carbon dots (O-CDs) that exhibit excellent performance as electrocatalysts. By adjusting the ratio of ethanol and acetone solvents during the synthesis, the surface electronic structure of the resulting O-CDs can be systematically tuned. The amount of edge active CO group was strongly correlated with the selectivity and activity of the O-CDs. The optimum O-CDs-3 exhibited extraordinary H2 O2 selectivity of up to 96.55% (n = 2.06) at 0.65 V (vs RHE) and achieved a remarkably low Tafel plot of 64.8 mV dec-1 . Furthermore, the realistic H2 O2 productivity yield of flow cell is measured to be as high as 111.18 mg h-1  cm-2 for a duration of 10 h. The findings highlight the potential of universal solvent engineering approach for enabling the development of carbon-based electrocatalytic materials with improved performance. Further studies will be undertaken to explore the practical implications of the findings for advancing the field of carbon-based electrocatalysis.

17.
J Environ Sci (China) ; 131: 48-58, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37225380

RESUMO

Perfluorinated or polyfluorinated compounds (PFCs) continue entering to the environmental as individuals or mixtures, but their toxicological information remains largely unknown. Here, we investigated the toxic effects and ecological risks of Perfluorooctane sulfonic acid (PFOS) and its substitutes on prokaryotes (Chlorella vulgaris) and eukaryotes (Microcystis aeruginosa). Based on the calculated EC50 values, the results showed that PFOS was significantly more toxic to both algae than its alternatives including Perfluorobutane sulfonic acid (PFBS) and 6:2 Fluoromodulated sulfonates (6:2 FTS), and the PFOS-PFBS mixture was more toxic to both algae than the other two PFC mixtures. The action mode of binary PFC mixtures on Chlorella vulgaris was mainly shown as antagonistic and on Microcystis aeruginosa as synergistic, by using Combination index (CI) model coupled with Monte Carlo simulation. The mean risk quotient (RQ) value of three individual PFCs and their mixtures were all below the threshold of 10-1, but the risk of those binary mixtures were higher than that of PFCs individually because of their synergistic effect. Our findings contribute to enhance the understanding of the toxicological information and ecological risks of emerging PFCs and provide a scientific basis for their pollution control.


Assuntos
Chlorella vulgaris , Microcystis , Humanos , Medição de Risco , Água Doce
18.
ACS Nano ; 17(9): 8671-8679, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37067477

RESUMO

Previous theoretical calculations have predicted that the incorporation of tellurium (Te) into carbon materials can significantly enhance their catalytic activity. Nevertheless, the experimental realization of efficient Te-doped carbon materials remains challenging. Here, we employed theoretical calculations to deduce the possible structure of Te-doped carbon materials. Our findings unveil that the formation of Te-O pairs in carbon materials with a relatively low oxygen coordination microenvironment can impart strong electron-donating capabilities, thereby boosting the electrocatalytic activity of oxygen reduction reaction (ORR). To verify our theoretical predictions, we synthesized Te-O pair-doped carbon materials using a tandem hydrothermal dehydration-pyrolysis strategy. This approach enabled efficient infiltration of Te into carbon materials. Our unconventional Te-O pair-doped carbon materials exhibit expanded interlayer distances and graphene-like nanosheet architectures, which provide enlarged active areas. These structural features contribute to the enhanced ORR catalytic performance of the as-prepared carbon catalyst. Our findings provide molecular-level insights into the design of various carbon-based electrocatalysts with binary-heteroatom-doped active sites.

19.
Sci Total Environ ; 882: 163619, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080299

RESUMO

With low bioaccessbility, persistence of the undissolved organic pollutants in soil and sediments poses threat to health of the resident. Although ubiquitous black carbon catalyzes a wide range of biogeochemical reactions in nature, its role in biotransformation of the compounds in non-aqueous phase like 2, 2'-nitrobiphenyl remains unclear. Reduction rate constants of 2, 2'-dinitrobiphenyl by Shewanella oneidensis MR-1 increased from 0.0044 h-1 by 7-fold to 0.035 h-1 in the presence of black carbons produced at pyrolysis temperature of 250-900 °C. Accordingly, electrical conductivity of black carbon was enhanced from 0 to 5.56 S∙cm-1. The reactivity of black carbon for catalyzing the biotransformation positively correlated with its electrical conductivity (R2 > 0.89), which was strongly associated with conductive graphitic clusters in it. The surface oxygenated groups in black carbon were likely not involved in the bioreduction. This work attaches importance to role of the ubiquitous black carbon in natural biotransformation of the undissolved pollutants, and elucidates new mechanism for the biotransformation.


Assuntos
Poluentes Ambientais , Grafite , Oxirredução , Elétrons , Biotransformação , Condutividade Elétrica , Poluentes Ambientais/metabolismo , Carbono
20.
Chemosphere ; 328: 138578, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37023900

RESUMO

As a kind of compounds abused in industry productions, phthalic acid esters (PAEs) cause serious problems in natural environment. PAEs pollution has penetrated into environmental media and human food chain. This review consolidates the updated information to assess the occurrence and distribution of PAEs in each transmission section. It is found that micrograms per kilogram of PAEs are exposed to humans through daily diets. After entering the human body, PAEs often undergo the metabolic process of hydrolysis to monoesters phthalates and conjugation process. Unfortunately, in the process of systemic circulation, PAEs will interact with biological macromolecules in vivo under the action of non-covalent binding, which is also the essence of biological toxicity. The interactions usually operate in the following pathways: (a) competitive binding; (b) functional interference; and (c) abnormal signal transduction. While the non-covalent binding forces mainly contain hydrophobic interaction, hydrogen bond, electrostatic interaction, and π interaction. As a typical endocrine disruptor, the health risks of PAEs often start with endocrine disorder, further leading to metabolic disruption, reproductive disorders, and nerve injury. Besides, genotoxicity and carcinogenicity are also attributed to the interaction between PAEs and genetic materials. This review also pointed out that the molecular mechanism study on biological toxicity of PAEs are deficient. Future toxicological research should pay more attention to the intermolecular interactions. This will be beneficial for evaluating and predicting the biological toxicity of pollutants at molecular scale.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Humanos , Ácidos Ftálicos/química , Poluentes Ambientais/toxicidade , Poluentes Ambientais/química , Meio Ambiente , Saúde Ambiental , Ésteres/metabolismo , China , Dibutilftalato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...