Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Sci Total Environ ; 935: 173249, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38754502

RESUMO

Selenium (Se), a highly beneficial animal feed additive, exhibits remarkable antioxidant and anti-inflammatory properties. Nano­selenium (Nano-Se) is an advanced formulation of Se featuring a specialized drug delivery vehicle, with good bioavailability, higher efficacy, and lower toxicity compared to the traditional form of Se. With the advancement of industry, cadmium (Cd) contamination occurs in different countries and regions and thereby contaminating different food crops, and the degree of pollution is degree increasing year by year. The present investigation entailed the oral administration of CdCl2 and/or Nano-Se to male chickens of the Hy-Line Variety White breed, which are one day old, subsequent to a 7-day adaptive feeding period, for a duration of 90 days. The study aimed to elucidate the potential protective impact of Nano-Se on Cd exposure. The study found that Nano-Se demonstrates potential in mitigating the blood-brain barrier (BBB) dysfunction characterized by impairment of adherens junctions (AJS) and tight junctions (TJS) by inhibiting reactive oxygen species (ROS) overproduction. In addition, the data uncovered that Nano-Se demonstrates a proficient ability in alleviating BBB impairment and inflammatory reactions caused by Cd through the modulation of the Wnt7A/ß-catenin pathway, highlights its potential to maintain brain homeostasis. Hence, this research anticipates that the utilization of Nano-Se effectively mitigate the detrimental impacts associated with Cd exposure on the BBB.


Assuntos
Barreira Hematoencefálica , Cádmio , Galinhas , Selênio , Animais , Cádmio/toxicidade , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Masculino , beta Catenina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
2.
J Agric Food Chem ; 72(23): 13382-13392, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814005

RESUMO

Cadmium (Cd) is a transition metal ion that is extremely harmful to human and animal biological systems. Cd is a toxic substance that can accumulate in the food chain and cause various health issues. Sulforaphane (SFN) is a natural bioactive compound with potent antioxidant properties. In our study, 80 1 day-old chicks were fed with Cd (140 mg/kg BW/day) and/or SFN (50 mg/kg BW/day) for 90 days. The blood-thymus barrier (BTB) is a selective barrier separating T-lymphocytes from blood and cortical capillaries in the thymus cortex. Our research revealed that Cd could destroy the BTB by downregulating Wnt/ß-catenin signaling and induce immunodeficiency, leading to irreversible injury to the immune system. The study emphasizes the health benefits of SFN in the thymus. SFN could ameliorate Cd-triggered BTB dysfunction and pyroptosis in the thymus tissues. SFN modulated the PI3K/AKT/FOXO1 axis, improving the level of claudin-5 (CLDN5) in the thymus to alleviate BTB breakdown. Our findings indicated the toxic impact of Cd on thymus, and BTB could be the specific target of Cd toxicity. The finding also provides evidence for the role of SFN in maintaining thymic homeostasis for Cd-related health issues.


Assuntos
Cádmio , Galinhas , Isotiocianatos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sulfóxidos , Timo , Animais , Isotiocianatos/farmacologia , Cádmio/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Timo/efeitos dos fármacos , Timo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Transdução de Sinais/efeitos dos fármacos , Humanos , Masculino
3.
Int J Psychophysiol ; 201: 112359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714215

RESUMO

Impaired facial expression perception is a core element in depression, but the underlying mechanism remains controversial. This event-related potential study investigated how attention modulates facial expression perception in depression using a nonclinical sample. A group of healthy controls (HC, N = 39) and a group of individuals with subsyndromal depression (SD, N = 39) categorized faces based on either facial expression (happy vs. sad) or gender (male vs. female). Behaviorally, the SD group was less sensitive to the emotional valence of facial expression than the HC group when their attention was directed to facial expression, as revealed by comparable subjective ratings and accuracy rates in response to facial expressions. When attention was directed towards facial gender, the SD group versus the HC group showed a negative bias, as revealed by a faster N170 for sad faces than happy faces. Together, our findings suggest that attention plays a role in understanding the relationship between depression and facial expression perception.


Assuntos
Atenção , Depressão , Eletroencefalografia , Potenciais Evocados , Expressão Facial , Reconhecimento Facial , Humanos , Masculino , Feminino , Reconhecimento Facial/fisiologia , Adulto , Adulto Jovem , Potenciais Evocados/fisiologia , Atenção/fisiologia , Depressão/fisiopatologia , Percepção Social , Emoções/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38657160

RESUMO

High-energy-density lithium metal batteries (LMBs) are confronted with crucial concerns of security and a short cycle lifespan caused by the uncontrollable formation of lithium (Li) dendrites. The poor thermal stability and heterogeneous Li deposition of conventional polyolefin separators often cause battery short circuiting and thermal runaway in LMBs. Herein, a novel dual-functional PE composite separator (PI-COOH/PE) coated by carboxyl polyimide (PI) microspheres is fabricated by an etching-acidification method. The three-dimensional (3D) high-temp PI microsphere with rich carboxyl groups on the surface improve the security of LMBs at extremely high temperatures and facilitate the formation of a stable and uniform SEI layer, which contributes to accelerating the Li+ transport and stabilizing the formation of the SEI layer. Consequently, the Li symmetric cell assembled with the (PI-COOH)/PE separator exhibits stable overpotential over 3000 h, and the corresponding Li//NCM811 full cells also show a high-level discharge capacity of 146.6 mAh g-1 at 5 C. Meanwhile, it also demonstrates outstanding cycling stability and thermal safety, which can survive continuously over 160 min at 140 °C (vs 21 min for PE). The above results indicate the (PI-COOH)/PE separator constructed by a low-cost and industrial-friendly strategy simultaneously addresses high-temperature stability and dendrite resistance.

5.
Ecotoxicol Environ Saf ; 269: 115780, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056123

RESUMO

The granulosa cells (GCs) of birds are essential for the reproduction and maintenance of populations in nature. Atrazine (ATR) is a potent endocrine disruptor that can interfere with reproductive function in females and Diaminochlorotriazine (DACT) is the primary metabolite of ATR in the organism. Melatonin (MT) is an endogenous hormone with antioxidant properties that plays a crucial role in development of animal germ cells. However, how ATR causes mitochondrial dysfunction, abnormal secretion of steroid hormones, and whether MT prevents ATR-induced female reproductive toxicity remains unclear. Thus, the purpose of this study is to investigate the protective effect of MT against ATR-induced female reproduction. In the present study, the GCs of quail were divided into 6 groups, as follows: C (Serum-free medium), MT (10 µM MT), A250 (250 µM ATR), MA250 (10 µM MT+250 µM ATR), D200 (200 µM DACT) and MD200 (10 µM MT+200 µM DACT), and were cultured for 24 h. The results revealed that ATR prevented GCs proliferation and decreased cell differentiation. ATR caused oxidative damage and mitochondrial dysfunction, leading to disruption of steroid synthesis, which posed a severe risk to GC's function. However, MT supplements reversed these changes. Mechanistically, our study exhibited that the ROS/SIRT1/STAR axis as a target for MT to ameliorate ATR-induced mitochondrial dysfunction and steroid disorders in GCs, which provides new insights into the role of MT in ATR-induced reproductive capacity and species conservation in birds.


Assuntos
Atrazina , Herbicidas , Melatonina , Doenças Mitocondriais , Animais , Feminino , Atrazina/toxicidade , Atrazina/metabolismo , Células da Granulosa/metabolismo , Herbicidas/toxicidade , Herbicidas/metabolismo , Melatonina/farmacologia , Doenças Mitocondriais/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo , Esteroides/metabolismo , Codorniz/genética , Codorniz/metabolismo
6.
J Cell Mol Med ; 28(1): e18037, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37974543

RESUMO

The tumour microenvironment (TME) is crucial for tumour development and progression. Tumour-associated macrophages (TAMs) in the TME can promote tumour progression and metastasis by releasing cytokines, such as IL-6. Calycosin, a phytoestrogen that is one of the active compounds in Radix Astragali, has been shown to inhibit tumour growth and metastasis. However, the underlying mechanism by which calycosin inhibits tumour growth remains unclear. Thus, this study aimed to investigate the effect of calycosin on IL-6 production in peripheral blood mononuclear cell (PBMC)- and THP-1-derived macrophages and explore its potential mechanisms using co-immunoprecipitation, western blotting, immunofluorescence, chromatin immunoprecipitation and luciferase assays. We found that calycosin treatment substantially upregulated the expression of ER-α36, a variant of the ER, and reduced IL-6 production in macrophages. Mechanistically, ER-α36 physically interacted with NF-κBp65 and retained p65 in the cytoplasm to attenuate NF-κB function as an IL-6 transcriptional inducer. In conclusion, our result indicated that calycosin inhibited IL-6 production by enhancing ER-α36 expression and its interaction with p65, which attenuated NF-κB function as an IL-6 inducer. Therefore, calycosin can be developed as an effective agent for cancer therapy by targeting TAMs.


Assuntos
Receptor alfa de Estrogênio , Isoflavonas , NF-kappa B , Neoplasias , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
7.
Adv Healthc Mater ; 13(6): e2302940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37844263

RESUMO

Myocardial infarction (MI) has a characteristic inflammatory microenvironment due to the overproduction of reactive oxygen species (ROS) and causes the extraordinary deposition of collagen and thereby fibrosis. An on-demand adaptive drug releasing hydrogel is designed to modulate the inflammatory microenvironment and inhibit cardiac fibroblasts (CFs) proliferation post MI by scavenging the overproduced ROS and releasing 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (DPCA) to maintain the expression of hypoxia-inducible factor 1α (HIF-1α). DPCA is prefabricated to a prodrug linked with disulfide bond (DPCA-S-S-OH). The DPCA-S-S-OH and carboxylated calixarene (CSAC4A) are grafted onto the backbone of methacrylated hyaluronic acid (HAMA) to obtain HAMA-S-S-DPCA and HAMA-CA, respectively, which are further reacted to form a dual network hydrogel (R+ /DPCA(CA)) with covalent linking and host-guest interaction between DPCA and CSAC4A. The ROS-triggered hydrolysis of ester bond and subsequently sustaining release of DPCA from the cavity of CSAC4A jointly cause the constant expression of HIF-1α, which significantly restricts the CFs proliferation, leading to suppressed fibrosis and promoted heart repair.


Assuntos
Hidrogéis , Infarto do Miocárdio , Humanos , Ácidos Carboxílicos , Liberação Controlada de Fármacos , Fibrose , Ácido Hialurônico , Infarto do Miocárdio/tratamento farmacológico , Espécies Reativas de Oxigênio
8.
Opt Express ; 31(22): 36521-36530, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017802

RESUMO

Microresonator-based optical frequency combs have been greatly developed in the last decade and have shown great potential for many applications. A dual-comb scheme is usually required for lidar ranging, spectroscopy, spectrometer and microwave photonic channelizer. However, dual-comb generation with microresonators would require doubled hardware resources and more complex feedback control. Here we propose a novel scheme for dual-comb generation with a single laser diode self-injection locked to a single microresonator. The output of the laser diode is split and pumps the microresonator in clockwise and counter-clockwise directions. The scheme is investigated intensely through numerical simulations based on a set of coupled Lugiato-Lefever equations. Turnkey counter-propagating single soliton generation and repetition rate tuning are demonstrated.

9.
BMC Plant Biol ; 23(1): 554, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940874

RESUMO

BACKGROUND: Wheat powdery mildew is an obligate biotrophic pathogen infecting wheat, which can pose a serious threat to wheat production. In this study, transcriptome sequencing was carried out on wheat leaves infected by Blumeria graminis f. sp. tritici from 0 h to 7 d. RESULTS: KEGG and GO enrichment analysis revealed that the upstream biosynthetic pathways and downstream signal transduction pathways of salicylic acid, jasmonic acid, and ethylene were highly enriched at all infection periods. Trend analysis showed that the expressions of hormone-related genes were significantly expressed from 1 to 4 d, suggesting that 1 d-4 d is the main period in which hormones play a defensive role. During this period of time, the salicylic acid pathway was up-regulated, while the jasmonic acid and ethylene pathways were suppressed. Meanwhile, four key modules and 11 hub genes were identified, most of which were hormone related. CONCLUSION: This study improves the understanding of the dynamical responses of wheat to Blumeria graminis f. sp. tritici infestation at the transcriptional level and provides a reference for screening core genes regulated by hormones.


Assuntos
Doenças das Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Etilenos/metabolismo , Hormônios/metabolismo , Ácido Salicílico/metabolismo
10.
Mater Horiz ; 10(9): 3438-3449, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37424353

RESUMO

Advanced elastomers are highly in demand for the fabrication of medical devices for minimally invasive surgery (MIS). Herein, a shape memory and self-healing polyurethane (PCLUSe) composed of semi-crystalline poly(ε-caprolactone) (PCL) segments and interchangeable and antioxidative diselenide bonds was designed and synthesized. The excellent shape memory of PCLUSe contributed to the smooth MIS operation, leading to less surgical wounds than in the case of sternotomy. The diselenide bonds of PCLUSe contributed to the rapid self-healing under 405 nm irradiation within 60 s, and the alleviation of tissue oxidation post injury. After being delivered through a 10 mm diameter trocar onto a beating canine heart by MIS, two shape-recovered PCLUSe films self-assembled (self-healing) into a larger single patch (20 × 10 × 0.2 mm3) under the trigger of laser irradiation in situ, which could efficiently overcome the limited-size problem within MIS and meet a larger treatment area. The diselenide bonds in the PCLUSe cardiac patches protected the myocardium under oxidative stress post myocardial infarction (MI), and significantly maintained the cardiac functions.


Assuntos
Infarto do Miocárdio , Poliuretanos , Animais , Cães , Poliuretanos/química , Elastômeros , Miocárdio
11.
Biomaterials ; 301: 122247, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487780

RESUMO

Tumor necrosis factor α (TNF-α) is a leading proinflammatory cytokine as the master regulator of inflammation in chronic inflammation diseases. Although TNF-α antagonists such as small molecules and peptides are in development, comparable effectiveness in TNF-α neutralization is hardly achieved only with TNF-α capture. In this study, simplified α2-macroglobulin (SM) as a novel TNF-α inhibitor was fabricated to relieve inflammation response by TNF-α capture and internalization with lysosomal degradation. SM was prepared by conjugating a TNF-α-targeting peptide with a receptor binding domain (RBD) derived from α2-macroglobulin through a synthetic biology strategy. SM exhibited effective capture and bioactivity inhibition of TNF-α. Improved endocytosis of TNF-α into lysosomes was observed with SM in macrophages. Even challenged with LPS/IFNγ, the macrophages showed relieved inflammation response with SM treatment. When administrated in chronic inflammation injury in vivo, SM achieved comparable therapeutic efficacy with Infliximab, showing ameliorated cartilage degeneration with relieved inflammation in osteoarthritis (OA) and preserved cardiac function with mitigated myocardium injury in myocardial infarction (MI). These results suggest that SM functioning in TNF-α capture-internalization mechanism might be promising therapeutic alternatives of TNF-α antibodies.


Assuntos
Infarto do Miocárdio , Osteoartrite , alfa 2-Macroglobulinas Associadas à Gravidez , Gravidez , Feminino , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Inflamação/tratamento farmacológico , Fatores Imunológicos
12.
J Clin Endocrinol Metab ; 109(1): 217-226, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37450562

RESUMO

CONTEXT: Progestins have recently been used as an alternative for gonadotropin-releasing hormone (GnRH) analogues to prevent premature luteinizing hormone surge due to the application of vitrification technology. However, the long-term efficacy and safety of a progestin-primed ovarian stimulation (PPOS) regimen, including oocyte competence, cumulative live birth rate (LBR), and offspring outcomes, remain to be investigated. OBJECTIVE: To compare cumulative LBR of preimplantation genetic testing (PGT) cycles between a PPOS regimen and GnRH analogues. METHODS: This was a retrospective cohort study at a tertiary academic medical center. A total of 967 patients with good prognosis were categorized into 3 groups, of which 478 patients received a long GnRH agonist, 248 patients received a GnRH antagonist, and 250 received a PPOS regimen. Medroxyprogesterone 17-acetate was the only progestin used in the PPOS regimen. The primary outcome was cumulative LBR. Secondary outcomes included time to live birth, cumulative rates of biochemical and clinical pregnancy and pregnancy loss, and perinatal outcomes. RESULTS: The PPOS regimen was negatively associated with cumulative LBR compared with GnRH antagonists and GnRH agonists (28.4% vs 40.7% and 42.7%). The average time to live birth was significantly shorter with GnRH antagonists than with the PPOS regimen. The cumulative biochemical and clinical pregnancy rates were also lower in the PPOS regimen than GnRH analogues, while cumulative pregnancy loss rates were similar across groups. Furthermore, the number and ratio of good-quality blastocysts were significantly reduced in the PPOS regimen compared with GnRH analogues. In addition, perinatal outcomes were comparable across 3 groups. CONCLUSION: A PPOS regimen may be adversely affect cumulative LBR and blastocyst quality in women with good prognosis compared with GnRH analogues in PGT cycles.


Assuntos
Coeficiente de Natalidade , Progestinas , Feminino , Humanos , Gravidez , Transferência Embrionária , Fertilização in vitro , Testes Genéticos , Hormônio Liberador de Gonadotropina , Nascido Vivo/epidemiologia , Indução da Ovulação , Taxa de Gravidez , Estudos Retrospectivos
13.
J Adv Res ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37499939

RESUMO

INTRODUCTION: Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia. However, the regulatory roles of circRNAs in VSMC autophagy remain unclear. OBJECTIVES: We aimed to identify circRNAs that are involved in VSMC autophagy-mediated neointimal hyperplasia, as well as elucidate the underlying mechanisms. METHODS: Dual-luciferase reporter gene assay was performed to validate two competing endogenous RNA axes, hsa_circ_0001402/miR-183-5p/FKBP prolyl isomerase like (FKBPL) and hsa_circ_0001402/miR-183-5p/beclin 1 (BECN1). Cell proliferation and migration analyses were employed to investigate the effects of hsa_circ_0001402, miR-183-5p, or FKBPL on VSMC proliferation and migration. Cell autophagy analysis was conducted to reveal the role of hsa_circ_0001402 or miR-183-5p on VSMC autophagy. The role of hsa_circ_0001402 or miR-183-5p on neointimal hyperplasia was evaluated using a mouse model of common carotid artery ligation. RESULTS: Hsa_circ_0001402 acted as a sponge for miR-183-5p, leading to the suppression of miR-183-5p expression. Through direct interaction with the coding sequence (CDS) of FKBPL, miR-183-5p promoted VSMC proliferation and migration by decreasing FKBPL levels. Besides, miR-183-5p reduced BECN1 levels by targeting the 3'-untranslated region (UTR) of BECN1, thus inhibiting VSMC autophagy. By acting as a miR-183-5p sponge, overexpression of hsa_circ_0001402 increased FKBPL levels to inhibit VSMC proliferation and migration, while simultaneously elevating BECN1 levels to activate VSMC autophagy, thereby alleviating neointimal hyperplasia. CONCLUSION: Hsa_circ_0001402, acting as a miR-183-5p sponge, increases FKBPL levels to inhibit VSMC proliferation and migration, while enhancing BECN1 levels to activate VSMC autophagy, thus alleviating neointimal hyperplasia. The hsa_circ_0001402/miR-183-5p/FKBPL axis and hsa_circ_0001402/miR-183-5p/BECN1 axis may offer potential therapeutic targets for neointimal hyperplasia.

14.
Biomater Sci ; 11(8): 2924-2934, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36892448

RESUMO

Osteochondral tissue involves cartilage, calcified cartilage and subchondral bone. These tissues differ significantly in chemical compositions, structures, mechanical properties and cellular compositions. Therefore, the repairing materials face different osteochondral tissue regeneration needs and rates. In this study, we fabricated an osteochondral tissue-inspired triphasic material, which was composed of a poly(lactide-co-glycolide) (PLGA) scaffold loaded with fibrin hydrogel, bone marrow stromal cells (BMSCs) and transforming growth factor-ß1 (TGF-ß1) for cartilage tissue, a bilayer poly(L-lactide-co-caprolactone) (PLCL)-fibrous membrane loaded with chondroitin sulfate and bioactive glass, respectively, for calcified cartilage, and a 3D-printed calcium silicate ceramic scaffold for subchondral bone. The triphasic scaffold was press-fitted into the osteochondral defects in rabbit (cylindrical defects with a diameter of 4 mm and a depth of 4 mm) and minipig knee joints (cylindrical defects with a diameter of 10 mm and a depth of 6 mm). The µ-CT and histological analysis showed that the triphasic scaffold was partly degraded, and significantly promoted the regeneration of hyaline cartilage after they were implanted in vivo. The superficial cartilage showed good recovery and uniformity. The calcified cartilage layer (CCL) fibrous membrane was in favor of a better cartilage regeneration morphology, a continuous cartilage structure and less fibrocartilage tissue formation. The bone tissue grew into the material, while the CCL membrane limited bone overgrowth. The newly generated osteochondral tissues were well integrated with the surrounding tissues too.


Assuntos
Biomimética , Alicerces Teciduais , Coelhos , Suínos , Animais , Alicerces Teciduais/química , Porco Miniatura , Cartilagem , Osso e Ossos
15.
J Thorac Dis ; 15(1): 168-185, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36794132

RESUMO

Background: Lung cancer (LC) is a malignancy with one of the highest mortality rates. Respiratory microbiota is considered to play a key role in the development of LC, but the molecular mechanisms are rarely studied. Methods: We used lipopolysaccharide (LPS) and lipoteichoic acid (LTA) to study human lung cancer cell lines PC9 and H1299. The gene expression of CXC chemokine ligand (CXCL)1/6, interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The Cell-Counting Kit 8 (CCK-8) was used to analyze cell proliferation. Transwell assays were performed to analyze cell migration ability. Flow cytometry was used to observe cell apoptosis. Western blot and qRT-PCR were used to analyze the expression of secreted phosphoprotein 1 (SPP1), toll-like receptor (TLR)-2/4, and NLR family pyrin domain containing 3 (NLRP3) to determine the mechanism of LPS + LTA. We evaluated the effect of LPS + LTA on cisplatin sensibility by analyzing cell proliferation, apoptosis, and caspase-3/9 expression levels. We observed the proliferation activity, apoptosis, and migration ability of cells in which SPP1 had been transfected small interfering (si) negative control (NC) and integrin ß3 siRNA. Then the mRNA expression level and protein expression of PI3K, AKT, and ERK were analyzed. Finally, the nude mouse tumor transplantation model was conducted to verify. Results: We studied that in two cell lines, the expression level of inflammatory factors in LPS+LTA group was significantly higher than that in single treatment group (P<0.001). We explored LPS + LTA combined treatment group significantly increased the expression of NLRP3 and genes and proteins. LPS + LTA + Cisplatin group could significantly reduce the inhibitory effect of LPS on cell proliferation (P<0.001), reduce the apoptosis rate (P<0.001) and significantly reduce the expression levels of caspase-3/9 (P<0.001) compared with Cisplatin group. Finally, we verified that LPS and LTA could increase osteopontin (OPN)/integrin ß3 expression and activate the PI3K/AKT pathway to promote malignant progression of LC in vitro studies. Conclusions: This study provides a theoretical basis for further exploration of the influence of lung microbiota on NSCLC and the optimization of LC treatment in the future.

16.
Plants (Basel) ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679048

RESUMO

As one of the serious diseases of wheat, powdery mildew (Blumeria graminis f. sp. tritici) is a long-term threat to wheat production. Therefore, it is of great significance to explore new powdery mildew-resistant genes for breeding. The wild relative species of wheat provide gene resources for resistance to powdery mildew breeding. Agropyron cristatum (2n = 4x = 28, genomes PPPP) is an important wild relative of wheat, carrying excellent genes for high yield, disease resistance, and stress resistance, which can be used for wheat improvement. To understand the molecular mechanism of powdery mildew resistance in the wheat-A. cristatum translocation line WAT2020-17-6, transcriptome sequencing was performed, and the resistance genes were analyzed by weighted gene co-expression network analysis (WGCNA). In the results, 42,845 differentially expressed genes were identified and divided into 18 modules, of which six modules were highly correlated with powdery mildew resistance. Gene ontology (GO) enrichment analysis showed that the six interested modules related to powdery mildew resistance were significantly enriched in N-methyltransferase activity, autophagy, mRNA splicing via spliceosome, chloroplast envelope, and AMP binding. The candidate hub genes of the interested modules were further identified, and their regulatory relationships were analyzed based on co-expression data. The temporal expression pattern of the 12 hub genes was verified within 96 h after powdery mildew inoculation by RT-PCR assay. In this study, we preliminarily explained the resistance mechanism of the wheat-A. cristatum translocation lines and obtained the hub candidate genes, which laid a foundation in the exploration of resistance genes in A. cristatum for powdery mildew-resistant breeding in wheat.

17.
Bone Joint Res ; 12(2): 91-102, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36718649

RESUMO

AIMS: Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis. METHODS: Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology. RESULTS: Berberine inhibited proliferation and adhesion of RA-FLS cells, and significantly reduced the expression of MMP-1, MMP-3, RANKL, and TNF-α. Transcriptional results suggested that berberine intervention mainly regulated forkhead box O (FOXO) signal pathway, prolactin signal pathway, neurotrophic factor signal pathway, and hypoxia-inducible factor 1 (HIF-1) signal pathway. CONCLUSION: The effect of berberine on RA was related to the regulation of RAS/mitogen-activated protein kinase/FOXO/HIF-1 signal pathway in RA-FLS cells.Cite this article: Bone Joint Res 2023;12(2):91-102.

18.
Front Physiol ; 14: 1269345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274047

RESUMO

Objective: To explore the inherent relationship between lower limb biomechanical indicators and effective scoring values of double roundhouse kick (DRK) by taekwondo athletes, and to find key biomechanical factors that trigger effective scoring. Methods: Using the DAEDO Protector and Scoring System (PSS) in conjunction with the Vicon optical motion capture system and Kistler 3D force plate, kinematic and dynamic indicators of the front kicking motion were obtained from 12 professional taekwondo athletes (18.00 ± 2.20 years, 182.15 ± 8.62 cm and 70.00 ± 14.82 kg). The correlation between kinematics, dynamics, and scoring values was initially analyzed using bivariate linear correlation. Subsequently, based on the results of the linear correlation analysis, a stepwise regression analysis was performed to establish a stepwise regression equation. Results: The results reveal that during the First Hit, there is a significant positive correlation (r > 0, p < 0.05) between peak hip flexion angular velocity of the dominant leg, knee abduction angle, and peak foot horizontal plane linear velocity of the non-dominant leg with effective score. On the other hand, peak ankle flexion angular velocity of the non-dominant leg, peak foot sagittal plane linear velocity, peak hip abduction angle, and peak hip flexion angle of the dominant leg exhibit a significant negative correlation (r < 0, p < 0.05) with effective score. These correlations hold statistical significance (DW> 1.023). During the Second Hit, there is a significant positive correlation (r > 0, p < 0.05) between peak ankle internal rotation angular velocity of the dominant leg, foot coronal plane linear velocity, hip adduction angular velocity, and peak ankle internal rotation moment of the non-dominant leg with effective score. Conversely, peak hip flexion angle of the dominant leg shows a significant negative correlation (r < 0, p < 0.05) with effective score. All these variables have a statistically significant impact on effective score (DW > 1.023). Conclusion: Explosive power, body posture, adequate terminal velocity, and body rotation have an association with effective scoring of the electronic protector. The peak angular velocity of the ankle joint of the dominant leg and the peak linear velocity of the foot horizontal plane of the non-dominant leg significantly contribute to the effectiveness score of the electronic protector.

19.
Sci Total Environ ; 851(Pt 2): 158354, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041622

RESUMO

Microbial aggregates play key roles in cyanobacterial blooms. Being a bacterial communication mechanism, quorum sensing (QS) synchronizes gene expression in a density-dependent manner and regulates bacterial physiological behavior. However, the regulatory role of QS in the formation of cyanobacteria-associated bacterial aggregates remains poorly understood. Here, we present insight into the role of QS in regulating bacterial aggregate formation in a representative bacterial strain, Novosphingobium sp. ERN07, which was isolated from Microcystis blooms in Lake Taihu. A biosensor assay showed that ERN07 exhibits significant AHL-producing capacity. Biochemical and microscopic analysis revealed that this strain possesses the ability to form aggregated communities. Gene knockout experiments indicated that the AHL-mediated QS system positively regulates bacterial aggregation. The aggregated communities possess the ability to enhance the production of extracellular polymeric substances (EPS), alter EPS composition ratios, and affect biofilm formation. The addition of aggregated substances also has a significant growth-promoting effect on M. aeruginosa. Transcriptomic analysis revealed that the aggregated substances positively regulate photosynthetic efficiency and energy metabolism of M. aeruginosa. These findings show that QS can mediate the aggregation phenotype and associated substrate spectrum composition, contributing to a better understanding of microalgal-bacterial interactions and mechanisms of Microcystis bloom maintenance in the natural environment.


Assuntos
Microcystis , Sphingomonadaceae , Percepção de Quorum , Lagos/microbiologia , Matriz Extracelular de Substâncias Poliméricas , Fenômenos Fisiológicos Bacterianos
20.
Food Funct ; 13(17): 8871-8879, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35920725

RESUMO

The intensive adoption of atrazine (ATZ) is a source of a persistently widespread pollutant in daily life. However, ATZ is still used as an essential herbicide in numerous countries because its toxic effect is not addressed as a public health concern. This study found that ATZ exposure caused mitophagy and pyroptosis crosstalk in the thymus. And it could destroy the thymus architecture, inducing immunodeficiency. Lycopene (LYC), a natural bioactive component, is applied to reduce the risk of chronic diseases caused by environmental factors. This work also investigated the health benefits of LYC in the ATZ-induced toxic effect on the thymus. LYC could ameliorate the ATZ-induced mitophagy and pyroptosis. LYC modulated the IL-6/STAT3/Foxo1 axis, improving the level of CD45 in the thymus. This work sheds light on the toxic effect of ATZ on the thymus, and it will provide evidence for ATZ health risks. Additionally, the finding also underscores a novel target of LYC in maintaining thymic homeostasis in ATZ exposure.


Assuntos
Atrazina , Atrazina/toxicidade , Interleucina-6/genética , Licopeno/farmacologia , Mitofagia , Piroptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...