Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Inorg Chem ; 63(13): 6067-6074, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489513

RESUMO

The first examples of alkali metal selenite sulfates, namely, Na8(SeO3)(SO4)3 (1), Na2(H2SeO3)(SO4) (2), and K4(H2SeO3)(HSO4)2(SO4) (3), were successfully synthesized by hydrothermal reactions. Their structures display three different zero-dimensional configurations composed of isolated sulfate tetrahedra and selenite groups separated by alkali metals. Na8(SeO3)(SO4)3 (1) features a noncentrosymmetric structure, while Na2(H2SeO3)(SO4) (2) and K4(H2SeO3)(HSO4)2(SO4) (3) are centrosymmetric. Powder second-harmonic-generation measurements revealed that Na8(SeO3)(SO4)3 (1) shows a phase-matchable SHG intensity about 1.2 times that of KDP. UV-vis-NIR diffuse reflectance spectroscopic analysis indicated that Na8(SeO3)(SO4)3 (1) has a short UV cutoff edge and a large optical band gap, which makes it a possible UV nonlinear optical material. Theoretical calculations revealed that the birefringence of Na8(SeO3)(SO4)3 (1) is 0.041 at 532 nm, which is suitable for phase-matching condition. This work provides a good experimental foundation for the exploration of new UV nonlinear crystals in an alkali metal selenite sulfate system.

2.
J Am Chem Soc ; 146(11): 7210-7215, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38437461

RESUMO

Transition metal-catalyzed reductive cross-couplings to build C-C/Si bonds have been developed, but the reductive cross-coupling to create the C(sp2)-B bond has not been explored. Herein, we describe a nickel-catalyzed reductive cross-coupling between aryl halides and bromoboranes to construct a C(sp2)-B bond. This protocol offers a convenient approach for the synthesis of a wide range of aryl boronate esters, using readily available starting materials. Mechanistic studies indicate that the key to the success of the reaction is the activation of the B-Br bond of bromoboranes with a Lewis base such as 2-MeO-py. The activation ensures that bromoboranes will react with the active nickel(I) catalyst prior to aryl halides, which is different from the sequence of the general nickel-catalyzed reductive C(sp2)-C/Si cross-coupling, where the oxidative addition of an aryl halide proceeds first. Notably, this approach minimizes the production of undesired homocoupling byproduct without the requirement of excessive quantities of either substrate.

4.
Chemistry ; 30(18): e202303857, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38205617

RESUMO

The methods for the cross-coupling of aryl(trialkyl)silanes are long-standing challenges due to the extreme inertness of C-Si(R3) bond, though the reaction is environmentally friendly and highly regioselective to synthesize biaryls. Herein, we report a copper-catalyzed cross-coupling of aryl(trialkyl)silanes and aryl via a radical mechanism. The reaction proceeds efficiently with aryl sulfonium salts as limiting reagents, exhibits broad substrate scope, and provides an important synthetic strategy to acquire biaryls, exemplified by unsymmetrical fluorescence probes and late-stage functionalization of drugs. Of note, the experimental and theoretical mechanistic studies revealed a radical mechanism where the copper catalyst and CsF play critical roles on the radical generation and desilylation process.

5.
Nat Mater ; 23(5): 695-702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38287128

RESUMO

π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki-Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor-donor, donor-acceptor and acceptor-acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.

6.
Angew Chem Int Ed Engl ; 63(4): e202314228, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38019184

RESUMO

Axially chiral diaryl ethers are present in numerous natural products and bioactive molecules. However, only few catalytic enantioselective approaches have been established to access diaryl ether atropisomers. Herein, we report the N-heterocyclic carbene-catalyzed enantioselective synthesis of axially chiral diaryl ethers via desymmetrization of prochiral 2-aryloxyisophthalaldehydes with aliphatic alcohols, phenol derivatives, and heteroaromatic amines. This reaction features mild reaction conditions, good functional group tolerance, broad substrate scope and excellent enantioselectivity. The utility of this methodology is illustrated by late-stage functionalization, gram-scale synthesis, and diverse enantioretentive transformations. Control experiments and DFT calculations support the association of NHC-catalyzed desymmetrization with following kinetic resolution to enhance the enantioselectivity.

7.
Angew Chem Int Ed Engl ; 62(43): e202310764, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37668107

RESUMO

Pnictogen bonding (PnB) has gained recognition as an appealing strategy for constructing novel architectures and unlocking new properties. Within the synthetic community, the development of a straightforward and much simpler protocol for cross-electrophile C-PIII coupling remains an ongoing challenge with organic halides. In this study, we present a simple strategy for photoinduced PnB-enabled cross-electrophile C-PIII couplings using readily available chlorophosphines and organic halides via merging single electron transfer (SET) and halogen atom transfer (XAT) processes. In this photomediated transformation, the PnB formed between chlorophosphines and alkyl amines facilitates the photogeneration of PIII radicals and α-aminoalkyl radicals through SET. Subsequently, the resulting α-aminoalkyl radicals activate C-X bonds via XAT, leading to the formation of carbon radicals. This methodology offers operational simplicity and compatibility with both aliphatic and aromatic chlorophosphines and organic halides.

8.
Org Lett ; 25(33): 6189-6194, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37578296

RESUMO

N-Heterocyclic nitreniums (NHNs) have been utilized as Lewis acid catalysts to activate substrates with lone pairs. Alternative to their conventional applications, we have discovered that NHNs can also serve as charge transfer complex catalysts. Herein, we present another potential of NHNs by utilizing a weak interaction between NHNs and CF3SO2Cl. The method promotes CF3SO2Cl to undergo photohomolysis, resulting in the CF3 radical. Mechanistic studies suggested that the weak interaction could be due to the π-hole effect of NHNs.

9.
Angew Chem Int Ed Engl ; 62(41): e202306307, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37340517

RESUMO

The direct arylation polycondensation (DArP) has become one of the most important methods to construct conjugated polymers (CPs). However, the homocoupling side-reactions of aryl halides and the low regioseletive reactivities of unfunctionalized aryls hinder the development of DArP. Here, an efficient Pd and Cu co-catalyzed DArP was developed via inert C-S bond cleavage of aryl thioethers, of which robustness was exemplified by over twenty conjugated polymers (CPs), including copolymers, homopolymers, and random polymers. The capture of oxidative addition intermediate together with experimental and theoretic results suggested the important role of palladium (Pd) and copper (Cu) co-catalysis with a bicyclic mechanism. The studies of NMR, molecular weights, trap densities, two-dimensional grazing-incidence wide-angle X-ray scattering (2D-GIWAXS), and the charge transport mobilities revealed that the homocoupling reactions were significantly suppressed with high regioselectivity of unfunctionalized aryls, suggesting this method is an excellent choice for synthesizing high performance CPs.

10.
Angew Chem Int Ed Engl ; 62(31): e202305088, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119088

RESUMO

Visible-light-induced photoreaction of carboranes is an effective approach to prepare carborane-containing compounds. While several methods involving boron-centered carboranyl radicals have been established, those for carbon-centered carboranyl radicals are underdeveloped, except for the UV-light-promoted photohomolysis. Herein, we describe a simple but effective approach to access carbon-centered carboranyl radicals by photoreduction of carborane phosphonium salts under blue light irradiation without using transition metals and photocatalysts. The utility of the method was demonstrated by successfully preparing a range of carborane-oxindole-pharmaceutical hybrids by radical cascade reactions. Computational and experimental studies suggest that the carbon-centered carboranyl radicals are generated by single-electron transfer of the photoactive charge-transfer complexes between the salts and the additive potassium acetate.

11.
World J Clin Cases ; 11(4): 852-858, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36818624

RESUMO

BACKGROUND: Abdominal Clostridium perfringens (C. perfringens) gas gangrene is a rare infection that has been described in the literature as most frequently occurring in postoperative patients with open trauma. Intra-abdominal gas gangrene caused by C. perfringens infection after closed abdominal injury is extremely rare, difficult to diagnose, and progresses rapidly with high mortality risk. Here, we report a case of C. perfringens infection caused by closed abdominal injury. CASE SUMMARY: A 54-year-old male suffered multiple intestinal tears and necrosis after sustaining an injury caused by falling from a high height. These injuries and the subsequent necrosis resulted in intra-abdominal C. perfringens infection. In the first operation, we removed the necrotic intestinal segment, kept the abdomen open and covered the intestine with a Bogota bag. A vacuum sealing drainage system was used to cover the outer layer of the Bogota bag, and the drainage was flushed under negative pressure. The patient was transferred to the intensive care unit for supportive care and empirical antibiotic treatment. The antibiotics were not changed until the results of bacterial culture and drug susceptibility testing were obtained. Two consecutive operations were then performed due to secondary intestinal necrosis. After three definitive operations, the patient successfully survived the perioperative period. Unfortunately, he died of complications related to Guillain-Barre syndrome 75 d after the first surgery. This paper presents this case of intra-abdominal gas gangrene infection and analyzes the diagnosis and treatment based on a review of current literature. CONCLUSION: When the intestines rupture leading to contamination of the abdominal cavity by intestinal contents, C. perfringens bacteria normally present in the intestinal tract may proliferate in large numbers and lead to intra-abdominal infection. Prompt surgical intervention, adequate drainage, appropriate antibiotic therapy, and intensive supportive care comprise the most effective treatment strategy. If the abdominal cavity is heavily contaminated, an open abdominal approach may be a beneficial treatment.

12.
Angew Chem Int Ed Engl ; 62(18): e202300703, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36808789

RESUMO

"Through space" palladium/hydrogen shift is an efficient strategy to achieve selective functionalization of a specific remote C-H bond. Compared with relatively extensive exploited 1,4-palladium migration process, the relevant 1,5-Pd/H shift was far less investigated. We herein report a novel 1,5-Pd/H shift pattern between a vinyl and an acyl group. Through the pattern, rapid access to 5-membered-dihydrobenzofuran and indoline derivatives has been achieved. Further studies have unveiled an unprecedented trifunctionalization (vinylation, alkynylation and amination) of a phenyl ring through 1,5-palladium migration relayed decarbonylative Catellani type reaction. A series of mechanistic investigations and DFT calculations have provided insights into the reaction pathway. Notably, it was unveiled that the 1,5-palladium migration in our case prefers a stepwise mechanism involving a PdIV intermediate.

13.
Angew Chem Int Ed Engl ; 62(12): e202218468, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36633173

RESUMO

Fluoroarenes are abundant and readily available feedstocks. However, due to the high reduction potentials of mono-fluoroarenes, their photoreduction remains a continuing challenge, motivating the development of efficient activation modes to address this issue. This report presents the blue light-induced N-heterocyclic carbene (NHC)-catalyzed single electron reduction of mono-fluoroarenes for biaryl cross-couplings. We discovered that under blue light irradiation, NHC/tBuOK combination could construct powerful photoactive architectures to promote single electron transfer for Caryl -F bond reduction via forming highly reducing NHC radical anion. Notably, the strategy was also successful to reduce Caryl -O, Caryl -N, and Caryl -S bonds for biaryl cross-couplings.

14.
Org Lett ; 25(3): 565-568, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36637257

RESUMO

Acyl fluorides are versatile reagents in organic synthesis. However, there is no precedent to employ acyl fluorides as acyl radical precursors. We herein report an N-heterocyclic nitrenium iodide salt-catalyzed photoreduction of acyl fluorides to produce acyl radicals, which could react with 2-isocyanobiaryls to afford various carbonyl phenanthridines.

15.
Org Lett ; 24(44): 8223-8227, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36314994

RESUMO

We herein describe a simple approach for generating acyl radical from acyl chloride via photoinduced single-electron transfer. It has been demonstrated that the generated acyl radicals could react with various substrates, including isocyanides, methacrylamides, alkenes, alkynes, and enynes, to afford diverse heterocycles (>10 classes). Mechanistic analyses show that a photoactive charge transfer complex between acyl chloride and a Lewis base additive is involved in enabling the photogeneration of the acyl radical. The study exemplifies a new and simple method of photoactivation of carbonyl compounds.

16.
Bone Marrow Transplant ; 57(11): 1704-1711, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36042299

RESUMO

The optimal chemotherapy regimen pre-transplantation for adult T-cell acute lymphoblastic leukemia (T-ALL) patients remains unknown. Here, we compared the transplant outcomes in 127 subjects receiving pediatric- (N = 57) or adult-type (N = 70) regimens pre-transplant. The corresponding 3-year cumulative incidences of relapse (CIR) was 7% (95% CI: 3-11%) and 29% (95% CI: 23-35%; P = 0.02), leukemia-free survivals (LFS) was 86% (95% CI: 81-91%) and 57% (95% CI: 51-63%; P = 0.003), overall survivals (OS) was 88% (95% CI: 84-92%) and 58% (95% CI: 52-64%; P = 0.002), the 1-year NRM was 4% (95% CI: 1-7%) and 9% (95% CI: 4-14%; P = 0.40). Multivariate analysis showed that pediatric-type regimen was associated with lower CIR (Hazard Ratio [HR] = 0.31 [95% CI: 0.09-1.00]; P = 0.05), better LFS (HR = 0.34 [95% CI: 0.15-0.78]; P = 0.01) and OS (HR = 0.30 [95% CI: 0.13-0.72]; P = 0.01). Our results suggested that adult T-ALL patients undergoing allo-HSCT might benefit from pediatric-type chemotherapy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Humanos , Criança , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/métodos , Indução de Remissão , Recidiva , Linfócitos T , Estudos Retrospectivos
17.
Nat Commun ; 13(1): 4719, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953490

RESUMO

Aromatic [5,5]-rearrangement can in principle be an ideal protocol to access dearomative compounds. However, the lack of competent [5,5]-rearrangement impedes the advance of the protocol. In this Article, we showcase the power of [5,5]-rearrangement recently developed in our laboratory for constructing an intriguing dearomative sulfonium specie which features versatile and unique reactivities to perform nucleophilic 1,2- and 1,4-addition and cyclization, thus achieving dearomative di- and trifunctionalization of easily accessible aryl sulfoxides. Impressively, the dearomatization products can be readily converted to sulfur-removed cyclohexenones, naphthalenones, bicyclic cyclohexadienones, and multi-substituted benzenes. Mechanistic studies shed light on the key intermediates and the remarkable chemo-, regio- and stereoselectivities of the reactions.


Assuntos
Sulfóxidos , Enxofre , Ciclização , Estrutura Molecular
18.
Org Lett ; 24(25): 4598-4602, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35709368

RESUMO

N-Heterocyclic nitrenium (NHN) salts, the analogues of N-heterocyclic carbenes, have attracted considerable interest. However, relatively little is known about their catalytic ability beyond their Lewis acid catalysis. Herein, we describe that NHNs can serve as catalytic electron acceptors for charge transfer complex photoactivations. We showcase that, under blue light irradiation, the NHN salts could catalyze the generation of aryl radicals from aryl halides.

19.
Chemistry ; 28(35): e202200869, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35543280

RESUMO

Aryl sulfides are in great demands in drugs and materials sciences. To avoid using nucleophilic and noxious thiols, many efforts have been focused on exploring novel sulfide resources. Herein, a reductive Pd-catalyzed, Ni-mediated method to synthesize aryl sulfides via a sulfide transfer reaction is developed. The utility and scope of this reaction is exemplified by various aryl electrophiles and aryl sulfides. Mechanistic studies reveal two competing catalytic cycles of sulfide transfer and aryl transfer in this reaction, where the former one is favored over the later one because of the large energy barrier difference during the transmetalation. Moreover, two important chemicals are late-stage functionalized by this method, exhibiting the potential applications in drugs and materials science.


Assuntos
Compostos de Sulfidrila , Sulfetos , Catálise
20.
Chem Sci ; 13(13): 3728-3739, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35432909

RESUMO

A DFT study has been conducted to understand the asymmetric alkyl-alkyl bond formation through nickel-catalysed reductive coupling of racemic alkyl bromide with olefin in the presence of hydrosilane and K3PO4. The key findings of the study include: (i) under the reductive experimental conditions, the Ni(ii) precursor is easily activated/reduced to Ni(0) species which can serve as an active species to start a Ni(0)/Ni(ii) catalytic cycle. (ii) Alternatively, the reaction may proceed via a Ni(i)/Ni(ii)/Ni(iii) catalytic cycle starting with a Ni(i) species such as Ni(i)-Br. The generation of a Ni(i) active species via comproportionation of Ni(ii) and Ni(0) species is highly unlikely, because the necessary Ni(0) species is strongly stabilized by olefin. Alternatively, a cage effect enabled generation of a Ni(i) active catalyst from the Ni(ii) species involved in the Ni(0)/Ni(ii) cycle was proposed to be a viable mechanism. (iii) In both catalytic cycles, K3PO4 greatly facilitates the hydrosilane hydride transfer for reducing olefin to an alkyl coupling partner. The reduction proceeds by converting a Ni-Br bond to a Ni-H bond via hydrosilane hydride transfer to a Ni-alkyl bond via olefin insertion. On the basis of two catalytic cycles, the origins for enantioconvergence and enantioselectivity control were discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...