Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692540

RESUMO

The emulsions prepared with most currently reported emulsifiers are stable only at room temperature and are susceptible to demulsification at higher temperatures. This thermal instability prevents their use in high-temperature and high-salt environments encountered oilfield extraction. To address this issue, in this study, two temperature-responsive emulsifiers, PSBMA and CS-PSBMA, were synthesized. Both emulsifiers exhibited the ability to form stable emulsions within the temperature range of 60-80 °C and undergo demulsification at 20-40 °C. A comprehensive investigation was conducted to assess the impact of emulsifier concentration, water-to-oil ratio, and salt ion concentration on the stability of emulsions formed by these two emulsifiers. The results demonstrated their remarkable emulsification capabilities across diverse oil phases. Notably, the novel emulsifier CS-PSBMA, synthesized through the grafting chitosan (CS) onto PSBMA, not only exhibits superior emulsion stability and UCST temperature responsiveness but also significantly enhanced the salt resistance of the emulsion. Remarkably, the emulsion maintained its stability even in the presence of monovalent salt ions at concentrations up to 2 mol/L (equivalent to a mineralization level of 1.33 × 105 mg/L in water) and divalent salt ions at concentrations up to 3 mol/L (equivalent to a mineralization level of 2.7 × 105 mg/L in water). The emulsions stabilized by both emulsifiers are resilient to harsh reservoir conditions and effectively emulsify heavy oils, enabling high-temperature emulsification and low-temperature demulsification. These attributes indicate their promising potential for industrial applications, particularly in the field of enhanced oil recovery.


Assuntos
Emulsificantes , Emulsões , Temperatura , Emulsificantes/química , Emulsões/química , Óleos/química , Água/química , Sais/química , Metacrilatos/química , Quitosana/química
2.
RSC Adv ; 14(3): 1944-1951, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38192313

RESUMO

Regulating the photoluminescence (PL) of carbon quantum dots (CQDs) through ion modification is a well-established and effective approach. Herein, we report the opposite regulation effects of Al3+ ions on the PL properties of two distinct types of CQDs (graphene quantum dots, GQDs, and nitrogen-doped carbon quantum dots of 2,3-diaminophenazine, DAP), and elucidate the underlying mechanism of the binding of Al3+ ions to different PL sites on CQDs by employing ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. Specifically, Al3+ ions are primarily situated around the oxygen-containing groups, which do not impact the π-π regions of GQDs. However, Al3+ ions are preferentially adsorbed on the top of pyridine nitrogen in the phenazine rings of DAP, thus reducing the PL regions of DAP. Based on the opposite PL effects of Al3+ on GQDs and DAP, we explore potential applications of information encryption and successfully realize multi-level information encryption and decryption, which may provide new strategies for CQDs in information security.

3.
Phys Chem Chem Phys ; 26(1): 304-313, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38062783

RESUMO

To control the transport stability and release efficiency of loaded theranostic drugs in triblock copolymer carriers, the reversible crosslinking ability is of great significance. A molecular level exploration of such a function is needed to extend existing stabilizing and responsive dissociation mechanisms of carriers. Here, dissipative particle dynamics simulations were used to first demonstrate the formation of triblock copolymer vesicular carriers. Chemical crosslinking was used to strengthen the structural stability of the vesicle shell to avoid drug leakage. Reversible decrosslinking along with dissociation of the vesicle and release of loaded drugs were then explored. The structural, energetic and dynamical properties of the system were discussed at the molecular level. The regulation mechanism of drug release patterns was revealed by systematically exploring the effect of intra and intermolecular repulsive interactions. The results indicate that the chemical crosslinking of copolymers enhanced the compactness of the vesicle shell with a strengthened microstructure, increased binding energy, and limited chain migration, thus achieving more stable delivery of drugs. In terms of drug release, we clarified how the pairwise interactions of beads in the solution system affect the responsive dissociation of the vesicle and associated release patterns (speed and amount) of drugs. More efficient delivery and smart release of theranostic drugs are achieved using such reversible crosslinked triblock copolymer vesicles.

4.
ACS Appl Mater Interfaces ; 15(51): 59482-59493, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38090752

RESUMO

Metal-nitrogen-carbon (M-N-C) catalysts obtained from zeolitic imidazolate frameworks (ZIFs) have great potential in the oxygen reduction reaction (ORR). Herein, based on the same three-dimensional (3D) topological structure of ZIF-67 and ZIF-8, ZIF-67 is grown on the ZIF-8 surface by the epitaxial growth method, and ZIF-8 is used as a sacrificial template to obtain a Co-embedded layered porous carbon nanocage (CoPCN) electrocatalyst. Meanwhile, the self-sacrificing template effectively improves the specific surface area of the porous structure and reduces the depletion of active sites. The CoPCN shows a high half-wave potential of 0.885 V and superior stability as well as excellent methanol resistance. Theoretical calculations demonstrate that the Co-N1-C2 sites of CoPCN effectively reduce the energy barrier of ORR. In addition, a zinc-air battery (ZAB) based on the CoPCN exhibits excellent peak power density (90 mW cm-2) and superior cycle performance. This work presents a novel idea in the design of ZIF precursor systems to synthesize efficient ORR catalysts.

5.
J Cardiothorac Surg ; 18(1): 313, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950265

RESUMO

INTRODUCTION: Ventricular septal defect (VSD) is a mechanical complication of acute myocardial infarction (MI) with a very high mortality, despite advances in surgical and circulatory support. The tremendous hemodynamic disturbance and the severely fragile myocardium render surgical repair a great challenge. The optimal time of surgical repair with or without circulatory support is still controversial. OBJECTIVE: The aim of this study is to review our experience with early surgical repair of post-MI VSD in a single major cardiac institution in China. METHODS: From January 2013 to October 2020, 9consecutive patients presented to our emergency department with a diagnosis of post-MI VSD. Among them, 8 were male, and the mean age was 58 ± 7years. The mean VSD size was 22.5 ± 5.7 mm. In all patients, an intra-aortic balloon pump (IABP)was inserted immediately after admission to cardiac surgery service. All patients were operated at a mean of 3.3 ± 2.9 days, and 4 within 24 h of the rupture (range 1 to 9 days post-VSD). In 5 cases, the VSD was located superiorly, and 4 cases in the posterior septum. RESULTS: The overall 30-day mortality was 11% (1/9). Coronary angiography was performed in all nine patients, four with single vessel disease had coronary stents implanted, and the other five received concomitant coronary artery bypass grafting during VSD repair surgery. There was no death in all 5 patients with anterior septal perforation. One patient with posterior septal perforation died in the operating room due to bleeding from the ventriculotomy site. Three survived patients were diagnosed with a small residual defect and mild left to right shunt post-repair. However, no further intervention was required, and patients remained asymptomatic (Killip II in 1 and III in 2). CONCLUSION: In our experience, immediate insertion of IABP and hemodynamic stabilization with early surgical intervention of VSD repair and concomitant coronary revascularization provided an 89% survival rate.


Assuntos
Infarto Miocárdico de Parede Anterior , Procedimentos Cirúrgicos Cardíacos , Comunicação Interventricular , Infarto do Miocárdio , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Estudos Retrospectivos , Comunicação Interventricular/cirurgia , Comunicação Interventricular/etiologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/cirurgia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Miocárdio , Infarto Miocárdico de Parede Anterior/complicações , Resultado do Tratamento
6.
Aging Dis ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029404

RESUMO

With the aging of the global population, the incidence of musculoskeletal diseases has been increasing, seriously affecting people's health. As people age, the microenvironment within skeleton favors bone resorption and inhibits bone formation, accompanied by bone marrow fat accumulation and multiple cellular senescence. Specifically, skeletal stem/stromal cells (SSCs) during aging tend to undergo adipogenesis rather than osteogenesis. Meanwhile, osteoblasts, as well as osteocytes, showed increased apoptosis, decreased quantity, and multiple functional limitations including impaired mechanical sensing, intercellular modulation, and exosome secretion. Also, the bone resorption function of macrophage-lineage cells (including osteoclasts and preosteoclasts) was significantly enhanced, as well as impaired vascularization and innervation. In this study, we systematically reviewed the effect of aging on bone and the within microenvironment (including skeletal cells as well as their intracellular structure variations, vascular structures, innervation, marrow fat distribution, and lymphatic system) caused by aging, and mechanisms of osteoimmune regulation of the bone environment in the aging state, and the causal relationship with multiple musculoskeletal diseases in addition with their potential therapeutic strategy.

7.
Plant Sci ; 337: 111865, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37696474

RESUMO

Flowering time is an important agronomic character that influences the adaptability and yield of soybean [Glycine max (L.) Merrill]. WRINKLED 1 (WRI1) plays an important regulatory role in plant growth and development. In this study, we found that the expression of GmWIR1a could be induced by long days. Compared with the wild type, transgenic soybean overexpressing GmWRI1a showed earlier flowering and maturity under long days but no significant changes under short days. Overexpression of GmWRI1a led to up-regulated expression of genes involved in the regulation of flowering time. The GmWRI1a protein was able to directly bind to the promoter regions of GmAP1, GmFUL1a, GmFUL2 and up-regulated their expression. GmCOL3 was identified by yeast one-hybrid library screening using the GmWRI1a promoter as bait. GmCOL3 was revealed to be a nucleus-localized protein that represses the transcription of GmWRI1a. Expression of GmCOL3 was induced by short days. Taken together, the results show that overexpression of GmWRI1a promotes flowering under long days by promoting the transcriptional activity of flowering-related genes in soybean, and that GmCOL3 binds to the GmWRI1a promoter and directly down-regulates its transcription. This discovery reveals a new function for GmWRI1a, which regulates flowering and maturity in soybean.

8.
Phys Chem Chem Phys ; 25(37): 25780-25788, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37724345

RESUMO

In recent years, Pickering emulsifiers have been widely used in various production fields due to their excellent structural stability, biocompatibility and environmental friendliness. For some applications, it is required that the emulsifier can quickly respond to environmental stimuli and control the transition between stable and unstable emulsions. In this paper, we report a novel composite Pickering emulsifier with Fe3O4 as the core and magnetic response recognition body, silica as the intermediate protective layer, and chitosan (CS) of different molecular weights to endow solid particles with surface activity and pH-responsive properties. This emulsifier can stabilize the emulsion in the emulsion system with deionized water as the aqueous phase and liquid paraffin as the oil phase and can control the demulsification of the formed emulsion under the dual pH/magnetic stimulation. The experimental results show that Fe3O4@SiO2@CS has good paramagnetism and pH responsiveness. The particle size of the composite emulsifier nanoparticles is between 90 nm and 120 nm, and the best stabilizing effect of the emulsion is achieved when the dosage is 0.5 wt%. In the pH range of 3-11, the emulsifier can rapidly demulsify a stable paraffin oil-water emulsion system under the action of a magnetic field of strength 0.4 T. The pH response of the emulsifier is as follows: when pH ≤ 2, the system can form a stable emulsion, which is composed of fully protonated chitosan as a free chain segment and Fe3O4@SiO2. Emulsion stabilization was achieved with monolithic Fe3O4@SiO2@CS as an emulsifier at pH > 2, and demulsification was achieved at pH ≈ pKb (CS) at 298 K. The research in this paper can provide a feasible idea and synthesis method for the preparation of organic-inorganic composite structure emulsifier.

9.
J Exp Clin Cancer Res ; 42(1): 165, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438818

RESUMO

BACKGROUND: The majority of women with epithelial ovarian cancer (OvCa) are diagnosed with metastatic disease, resulting in a poor 5-year survival of 31%. Obesity is a recognized non-infectious pandemic that increases OvCa incidence, enhances metastatic success and reduces survival. We have previously demonstrated a link between obesity and OvCa metastatic success in a diet-induced obesity mouse model wherein a significantly enhanced tumor burden was associated with a decreased M1/M2 tumor-associated macrophage ratio (Liu Y et al. Can, Res. 2015; 75:5046-57). METHODS: The objective of this study was to use pre-clinical murine models of diet-induced obesity to evaluate the effect of a high fat diet (HFD) on response to standard of care chemotherapy and to assess obesity-associated changes in the tumor microenvironment. Archived tumor tissues from ovarian cancer patients of defined body mass index (BMI) were also evaluated using multiplexed immunofluorescence analysis of immune markers. RESULTS: We observed a significantly diminished response to standard of care paclitaxel/carboplatin chemotherapy in HFD mice relative to low fat diet (LFD) controls. A corresponding decrease in the M1/M2 macrophage ratio and enhanced tumor fibrosis were observed both in murine DIO studies and in human tumors from women with BMI > 30. CONCLUSIONS: Our data suggest that the reported negative impact of obesity on OvCa patient survival may be due in part to the effect of the altered M1/M2 tumor-associated macrophage ratio and enhanced fibrosis on chemosensitivity. These data demonstrate a contribution of host obesity to ovarian tumor progression and therapeutic response and support future combination strategies targeting macrophage polarization and/or fibrosis in the obese host.


Assuntos
Neoplasias Ovarianas , Padrão de Cuidado , Humanos , Feminino , Animais , Camundongos , Microambiente Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Obesidade/complicações , Carcinoma Epitelial do Ovário
10.
Open Med (Wars) ; 18(1): 20230721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333451

RESUMO

In view of the association between long noncoding RNA OIP5-AS1 and osteoarthritis (OA) pathology, the corresponding potential mechanism is worthy of exploration. Primary chondrocytes were identified by morphological observation and immunohistochemical staining of collagen II. The association between OIP5-AS1 and miR-338-3p was analyzed by StarBase and dual-luciferase reporter assay. After the expression of OIP5-AS1 or miR-338-3p in interleukin (IL)-1ß-stimulated primary chondrocytes and CHON-001 cells was manipulated, cell viability, proliferation, apoptosis rate, apoptosis-related protein (cleaved caspase-9, Bax) expressions, extracellular matrix (ECM) (matrix metalloproteinase (MMP)-3, MMP-13, aggrecan, and collagen II), PI3K/AKT pathway, and mRNA expressions of inflammatory factors (IL-6 and IL-8), OIP5-AS1, and miR-338-3p were determined by cell counting kit-8, EdU, flow cytometry, Western blot, and quantitative reverse transcription-polymerase chain reaction. As a result, the expression of OIP5-AS1 was downregulated in IL-1ß-activated chondrocytes, while miR-338-3p was overexpressed. OIP5-AS1 overexpression reversed the effects of IL-1ß on viability, proliferation, apoptosis, ECM degradation, and inflammation in chondrocytes. However, OIP5-AS1 knockdown exhibited opposite effects. Interestingly, the effects of OIP5-AS1 overexpression were partially offset by miR-338-3p overexpression. Furthermore, OIP5-AS1 overexpression blocked the PI3K/AKT pathway by modulating miR-338-3p expression. In sum, OIP5-AS1 promotes viability and proliferation, and inhibits apoptosis and ECM degradation in IL-1ß-activated chondrocytes by targeting miR-338-3p through blocking the PI3K/AKT pathway, indicating an attractive strategy for OA treatment.

11.
J Orthop Surg Res ; 18(1): 444, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344864

RESUMO

PURPOSE: As the global population ages rapidly, osteoporotic fractures have become an important public health problem. Previous studies have suggested that miR-137 is involved in the regulation of bone formation, but its specific regulatory mechanism remains unclear. In this study, we aimed to explore the expression, role, and regulatory mechanism of miR-137 in the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). METHODS: hBMSCs were induced into osteoblasts at first, and the expression level of miR-137 at different time points was detected. After knockdown and overexpression of miR-137, the effect of miR-137 on the osteogenic differentiation of hBMSCs was examined through alkaline phosphatase (ALP) staining and Alizarin Red staining. Western blotting was performed to detect the expression of runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway. Bioinformatics websites were used to predict the target binding sites for miR-137 and KDM4A, and the results were validated using luciferase reporter gene experiments. Moreover, the ALP activity, calcium nodule formation, and activation of Runx2, OCN, and TLR4/NF-κB pathways were observed after knockdown of KDM4A. RESULTS: The expression of miR-137 decreased during osteogenic differentiation. Knockdown of miR-137 expression increased the osteogenic ability of hBMSCs, while overexpression of it weakened the ability. Through the activation of the TLR4/NF-κB pathway, miR-137 inhibited osteogenic differentiation. KDM4A was identified as a predicted target gene of miR-137. After knocking down KDM4A expression, the osteogenic ability of hBMSCs was diminished, and the TLR4/NF-κB pathway was activated. Furthermore, the osteogenic ability of hBMSCs was partially restored and the activation level of TLR4/NF-κB was reduced after miR-137 knockdown. CONCLUSION: MiR-137 enhances the activity of the TLR4/NF-κB pathway by targeting KDM4A, thereby inhibiting the osteogenic differentiation of hBMSCs and exacerbating osteoporosis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Humanos , NF-kappa B/metabolismo , Osteogênese , Receptor 4 Toll-Like/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MicroRNAs/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Células Cultivadas , Células da Medula Óssea/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo
12.
Aging Dis ; 14(5): 1555-1582, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196112

RESUMO

Bone is a tissue that is active throughout the lifespan, and its physiological activities, such as growth, development, absorption, and formation, are always ongoing. All types of stimulation that occur in sports play an important role in regulating the physiological activities of bone. Here, we track the latest research progress locally and abroad, summarize the recent, relevant research results, and systematically summarize the effects of different types of exercise on bone mass, bone strength and bone metabolism. We found that different types of exercise have different effects on bone health due to their unique technical characteristics. Oxidative stress is an important mechanism mediating the exercise regulation of bone homeostasis. Excessive high-intensity exercise does not benefit bone health but induces a high level of oxidative stress in the body, which has a negative impact on bone tissue. Regular moderate exercise can improve the body's antioxidant defense ability, inhibit an excessive oxidative stress response, promote the positive balance of bone metabolism, delay age-related bone loss and deterioration of bone microstructures and have a prevention and treatment effect on osteoporosis caused by many factors. Based on the above findings, we provide evidence for the role of exercise in the prevention and treatment of bone diseases. This study provides a systematic basis for clinicians and professionals to reasonably formulate exercise prescriptions and provides exercise guidance for patients and the general public. This study also provides a reference for follow-up research.

13.
Gynecol Endocrinol ; 39(1): 2206927, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37141919

RESUMO

OBJECTIVE: To establish a cutoff level of AMH which could help for the diagnosis of PCOS, to investigate the predictive value of AMH combined with androgens in Chinese women to diagnose PCOS. MATERIALS AND METHODS: This is a prospective case control study, 550 women recruited (aged 20-40 years), in which 450 PCOS women recruited according to the Rotterdam criteria and 100 non-PCOS women in the control group were from the women for the pregnancy preparation examination. AMH were measured by the Elecsys AMH Plus immunoassay. Androgens and other sex hormone were measured. The validity of AMH toward the diagnosis of PCOS, or AMH combined with total testosterone, free testosterone, bioavailable testosterone and androstenedione was estimated by receiver operating characteristic (ROC)curves, and correlations between paired variables was estimated by Spearman's rank correlation coefficient. RESULTS: The cutoff value of AMH in Chinese reproductive-age women with PCOS is 4.64 ng/mL, AUC under the curve is 0.938, with 81.6% sensitivity, and 92.0% specificity. Total testosterone, free testosterone, bioactive testosterone, and androstenedione are significantly higher in women with PCOS of reproductive age than in controls. The combination of AMH and free testosterone resulted in a higher AUC of 94.8%, with higher sensitivity (86.1%) and excellent specificity (90.3%) for the prediction of PCOS. CONCLUSION: The Elecsys AMH Plus immunoassay, with a cutoff of 4.64 ng/mL, is a robust method for identifying PCOM to aid in PCOS diagnosis. The combination of AMH and free testosterone resulted in a higher AUC of 94.8% for the diagnose of PCOS.


Assuntos
Hormônios Peptídicos , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/diagnóstico , Androgênios , Hormônio Antimülleriano , Androstenodiona , Estudos de Casos e Controles , População do Leste Asiático , Testosterona
14.
Nat Commun ; 13(1): 7247, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434112

RESUMO

Ion desorption is extremely challenging for adsorbents with superior performance, and widely used conventional desorption methods involve high acid or base concentrations and large consumption of reagents. Here, we experimentally demonstrate the rapid and efficient desorption of ions on magnetite-graphene oxide (M-GO) by adding low amounts of Al3+. The corresponding concentration of Al3+ used is reduced by at least a factor 250 compared to conventional desorption method. The desorption rate reaches ~97.0% for the typical radioactive and bivalent ions Co2+, Mn2+, and Sr2+ within ~1 min. We achieve effective enrichment of radioactive 60Co and reduce the volume of concentrated 60Co solution by approximately 10 times compared to the initial solution. The M-GO can be recycled and reused easily without compromising its adsorption efficiency and magnetic performance, based on the unique hydration anionic species of Al3+ under alkaline conditions. Density functional theory calculations show that the interaction of graphene with Al3+ is stronger than with divalent ions, and that the adsorption probability of Al3+ is superior than that of Co2+, Mn2+, and Sr2+ ions. This suggests that the proposed method could be used to enrich a wider range of ions in the fields of energy, biology, environmental technology, and materials science.

15.
Phys Chem Chem Phys ; 24(47): 28886-28894, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36437686

RESUMO

Polymersomes with inhomogeneous membranes in composition and structure have generated widespread interest for the preparation of functionalized nanocarriers. We propose a simple but versatile strategy to manipulate inhomogeneous subdomains on polymersome membranes by the co-assembly of block copolymer blends with varied molecular architectures and chemistries. Both binary and ternary copolymer blends are considered to construct polymersomes, and the subdomains of the membranes are formed by controlling the difference in the flexibility and rigidity of different blocks. This difference contributes to the formation of disk-like domains (by rigid blocks) and soft domains (by flexible blocks) on the membrane. An interesting effect of this structure is that in response to external stimuli, the soft membrane domain becomes worm-like or porous to "open" the polymersome for matter exchange, while the rigid domain stays undecomposed and acts like an anchor binding all flexible copolymers. Once the external stimuli disappear, all flexible copolymers can be pulled back to restore the original polymersome morphology (i.e., "close" the polymersome). The specific morphological reversibility of hybrid polymersomes holds great potential for practical applications where changeable membrane permeability or shape under environmental stimuli is highly needed.

16.
Front Bioeng Biotechnol ; 10: 953916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935491

RESUMO

Exosomes are membranous lipid vesicles fused with intracellular multicellular bodies that are released into the extracellular environment. They contain bioactive substances, including proteins, RNAs, lipids, and cytokine receptors. Exosomes in the skeletal microenvironment are derived from a variety of cells such as bone marrow mesenchymal stem cells (BMSCs), osteoblasts, osteoclasts, and osteocytes. Their biological function is key in paracrine or endocrine signaling. Exosomes play a role in bone remodeling by regulating cell proliferation and differentiation. Genetic engineering technology combined with exosome-based drug delivery can therapy bone metabolic diseases. In this review, we summarized the pathways of exosomes derived from different skeletal cells (i.e., BMSCs, osteoblasts, osteocytes, and osteoclasts) regulate the skeletal microenvironment through proteins, mRNAs, and non-coding RNAs. By exploring the role of exosomes in the skeletal microenvironment, we provide a theoretical basis for the clinical treatment of bone-related metabolic diseases, which may lay the foundation to improve bone tumor microenvironments, alleviate drug resistance in patients.

17.
Am J Alzheimers Dis Other Demen ; 37: 15333175221109749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35730360

RESUMO

Cerebrovascular changes occur in Alzheimer's disease (AD). The progesterone receptor membrane component-1 (PGRMC1) is a well identified hormone receptor with multiple functions in AD. This study aims to explore the involvement of PGRMC1 in the regulation of vascular endothelial function, providing new therapy options for AD. Single-cell sequencing revealed that the expression of PGRMC1 is lower in AD. By bioinformatics analysis, we found PGRMC1 was associated with regulation of cell proliferation, angiogenesis and etc. To understand the functional significance of PGRMC1, knockdown and overexpression were performed using human brain microvascular endothelial cells (HBMVECs), respectively. Cell proliferation assay, migration assay, tube formation assay were performed in experiments. We demonstrated that the overexpression of PGRMC1 promoted the cellular processes associated with endothelia cell proliferation, migration, and angiogenesis, significantly. In conclusion, PGRMC1 may contribute to the modulation of HBMVECs function in AD. This finding may offer novel targets for AD treatment.


Assuntos
Doença de Alzheimer , Receptores de Progesterona , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo
18.
Int J Chron Obstruct Pulmon Dis ; 17: 1285-1298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673595

RESUMO

Purpose: Bufei Jianpi formula (BJF), a traditional Chinese medicine, is an effective and safe therapeutic formula for chronic obstructive pulmonary disease (COPD). BJF treatment is known to reduce the incidence of loose stools in rats with COPD. It is unclear whether BJF regulates gut microbiota. This study examined whether BJF improved mucosal immune function by remodeling the gut microbiota and modulating metabolites in COPD rats. Methods: Sixty Sprague Dawley (SD) rats were randomized into control, model, BJF, aminophylline (APL), and probiotics (PBT) groups. The stable COPD rat model was duplicated using repeated cigarette smoke inhalation and lipopolysaccharide (LPS) injection. Normal saline, BJF, APL, or PBT were intragastrically administered from weeks eight to twelve, and then the rats were sacrificed at week thirteen. Lung and colon tissues were removed; feces were collected. Pulmonary function, histopathology, levels of inflammatory factors, and activation of NF-κB in the lung tissues were evaluated. Gut microbiota were analyzed using 16S rRNA gene sequencing; fecal short-chain fatty acid (SCFA) concentrations were determined using gas chromatography/mass spectrometry. Mucosal immune response-related genes and proteins were determined using quantitative polymerase chain reaction and Western blotting. Results: BJF improved pulmonary function and reduced lung inflammation. Further, BJF treatment altered the gut microbiota composition and significantly increased the abundance of Firmicutes and the ratio of Firmicutes to Bacteroides, raising SCFA levels, including acetate, butyrate, and propionate levels. However, the abundance of Bacteroidetes, Proteobacteria, Spirochaetes, Clostridiaceae, and Treponema decreased after BJF administration. BJF decreased the gene and protein expression of NLRP3, Caspase-1, IL-8, and IL-1ß, and increased GPR43 expression. Conclusion: Overall, BJF administration improved mucosal immune function by remodeling the gut microbiota and suppressing the SCFAs/GPR43/NLRP3 pathway in COPD rats. This study provides evidence for the mechanisms underlying BJF-induced improvements in COPD and supports clinical application of BJF.


Assuntos
Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica , Animais , Medicamentos de Ervas Chinesas , Humanos , Imunidade , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley
19.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628575

RESUMO

The heart is the core organ of the circulatory system. Through the blood circulation system, it has close contact with all tissues and cells in the body. An exosome is an extracellular vesicle enclosed by a phospholipid bilayer. A variety of heart tissue cells can secrete and release exosomes, which transfer RNAs, lipids, proteins, and other biomolecules to adjacent or remote cells, mediate intercellular communication, and regulate the physiological and pathological activities of target cells. Cardiogenic exosomes play an important role in regulating almost all pathological and physiological processes of the heart. In addition, they can also reach distant tissues and organs through the peripheral circulation, exerting profound influence on their functional status. In this paper, the composition and function of cardiogenic exosomes, the factors affecting cardiogenic exosomes and their roles in cardiovascular physiology and pathophysiology are discussed, and the close relationship between cardiovascular system and motor system is innovatively explored from the perspective of exosomes. This study provides a reference for the development and application of exosomes in regenerative medicine and sports health, and also provides a new idea for revealing the close relationship between the heart and other organ systems.


Assuntos
Sistema Cardiovascular , Exossomos , Vesículas Extracelulares , Comunicação Celular , Exossomos/metabolismo , Coração
20.
RSC Adv ; 12(21): 13406-13411, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35520116

RESUMO

ZrO2-WO3 mixed oxide plays an essential role in the chemical and petroleum industries. So far, very little work has paid attention to the activation of the low activity of ZrO2-WO3 catalysts. In this work, poorly reactive ZrO2-WO3 was prepared as a model catalyst by a sol-gel method and it was accompanied by post-hydrothermal treatment with various solutions. The catalytic results in the Friedel-Crafts reaction of anisole and benzyl alcohol showed that the post-hydrothermal treatment with ethylenediamine or ammonium hydroxide solutions dramatically improved the activity of ZrO2-WO3, while the hydrothermal treatments with water or ammonia chloride solution resulted in poorer activity and selectivity. The former treatments were found to induce a huge transformation of the ZrO2 crystal from monoclinic to tetragonal as well as a significant increase in acidic WO x clusters that anchored onto ZrO2. The generation of the WO x clusters was responsible for the activation of ZrO2-WO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...