Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nat Commun ; 15(1): 3171, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609379

RESUMO

The lifetime of electronic coherences found in photosynthetic antennas is known to be too short to match the energy transfer time, rendering the coherent energy transfer mechanism inactive. Exciton-vibrational coherence time in excitonic dimers which consist of two chromophores coupled by excitation transfer interaction, can however be much longer. Uncovering the mechanism for sustained coherences in a noisy biological environment is challenging, requiring the use of simpler model systems as proxies. Here, via two-dimensional electronic spectroscopy experiments, we present compelling evidence for longer exciton-vibrational coherence time in the allophycocyanin trimer, containing excitonic dimers, compared to isolated pigments. This is attributed to the quantum phase synchronization of the resonant vibrational collective modes of the dimer, where the anti-symmetric modes, coupled to excitonic states with fast dephasing, are dissipated. The decoupled symmetric counterparts are subject to slower energy dissipation. The resonant modes have a predicted nearly 50% reduction in the vibrational amplitudes, and almost zero amplitude in the corresponding dynamical Stokes shift spectrum compared to the isolated pigments. Our findings provide insights into the mechanisms for protecting coherences against the noisy environment.

2.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517256

RESUMO

Parametric superfluorescence (PSF), which originated from the optical amplification of vacuum quantum noise, is the primary noise source of femtosecond fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS). It severely affects the detection limit of FNOPAS to collect the femtosecond time-resolved spectra of extremely weak fluorescence. Here, we report the development of femtosecond fluorescence conical optical parametric amplification spectroscopy (FCOPAS), aimed at effectively suppressing the noise fluctuation from the PSF background. In contrast to traditional FNOPAS configurations utilizing lateral fluorescence collection and dot-like parametric amplification, FCOPAS employs an innovative conical fluorescence collection and ring-like amplification setup. This design enables effective cancellation of noise fluctuation across the entire PSF ring, resulting in an approximate order of magnitude reduction in PSF noise compared to prior FNOPAS outcomes. This advancement enables the resolution of transient fluorescence spectra of 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) dye molecules in ethanol, even at an optically dilute concentration of 10-6 mol/l, with significantly enhanced signal-to-noise ratios. This improvement will be significant for extremely weak fluorescence detection on the femtosecond time scale.

3.
Angew Chem Int Ed Engl ; 63(16): e202401255, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38298118

RESUMO

Polylactic acid (PLA) has attracted increasing interest as a sustainable plastic because it can be degraded into CO2 and H2O in nature. However, this process is sluggish, and even worse, it is a CO2-emitting and carbon resource waste process. Therefore, it is highly urgent to develop a novel strategy for recycling post-consumer PLA to achieve a circular plastic economy. Herein, we report a one-pot photoreforming route for the efficient and selective amination of PLA waste into value-added alanine using CoP/CdS catalysts under mild conditions. Results show the alanine production rate can reach up to 2.4 mmol gcat -1 h-1, with a high selectivity (>75 %) and excellent stability. Time-resolved transient absorption spectra (TAS) reveal that CoP can rapidly extract photogenerated electrons from CdS to accelerate proton reduction, favoring hole-dominated PLA oxidation to coproduce alanine. This study offers an appealing way for upcycling PLA waste and creates new opportunities for green synthesis of amino acids.

4.
Cell Signal ; 117: 111114, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387686

RESUMO

Obesity has long been thought to be a main cause of hyperlipidemia. As a systemic disease, the impact of obesity on organs, tissues and cells is almost entirely negative. However, the relationship between obesity and bone loss is highly controversial. On the one hand, obesity has long been thought to have a positive effect on bone due to increased mechanical loading on the skeleton, conducive to increasing bone mass to accommodate the extra weight. On the other hand, obesity-related metabolic oxidative modification of low-density lipoprotein (LDL) in vivo causes a gradual increase of oxidized LDL (ox-LDL) in the bone marrow microenvironment. We have reported that low-density lipoprotein receptor-related protein 6 (LRP6) acts as a receptor of ox-LDL and mediates the bone marrow stromal cells (BMSCs) uptake of ox-LDL. We detected elevated serum ox-LDL in obese mice. We found that ox-LDL uptake by LRP6 led to an increase of intracellular reactive oxygen species (ROS) in BMSCs, and N-acetyl-L-cysteine (NAC) alleviated the cellular senescence and impairment of osteogenesis induced by ox-LDL. Moreover, LRP6 is a co-receptor of Wnt signaling. We found that LRP6 preferentially binds to ox-LDL rather than dickkopf-related protein 1 (DKK1), both inhibiting Wnt signaling and promoting BMSCs senescence. Mesoderm development LRP chaperone (MESD) overexpression inhibits ox-LDL binding to LRP6, attenuating oxidative stress and BMSCs senescence, eventually rescuing bone phenotype.


Assuntos
Medula Óssea , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Camundongos , Medula Óssea/metabolismo , Proteínas de Transporte/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Obesidade/complicações , Estresse Oxidativo
5.
Front Plant Sci ; 15: 1325078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419780

RESUMO

Compared to fluctuating soil water (FW) conditions, stable soil water (SW) can increase plant water use efficiency (WUE) and improve crop growth and aboveground yield. It is unknown, however, how stable and fluctuating soil water affect root vegetables. Here, the effects of SW and FW were studied on cherry radish in a pot experiment, using negative pressure irrigation and conventional irrigation, respectively. The assessed effects included agronomic parameters, physiological indices, yield, quality and WUE of cherry radish. Results showed that under similarly average soil water contents, compared with FW, SW increased plant photosynthetic rate, stomatal conductance and transpiration rate, decreased leaf proline content by 13.7-73.3% and malondialdehyde content by 12.5-40.0%, and increased soluble sugars content by 6.3-22.1%. Cherry radish had greater biomass accumulation and nutrient uptake in SW than in FW. Indeed, SW increased radish output by 34.6-94.1% with no influence on root/shoot ratio or root quality. In conclusion, soil water stability affected directly the water physiological indicators of cherry radish and indirectly its agronomic attributes and nutrient uptake, which in turn influenced the crop biomass and yield, as well as WUE. This study provides a new perspective for improving agronomy of root crops and WUE through managing soil water stability.

6.
ChemSusChem ; 17(2): e202301041, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37768029

RESUMO

Solar hydrogen production at a high efficiency holds the significant importance in the age of energy crisis, while the micro-environment manipulation of active sites on photocatalysts plays a profound role in enhancing the catalytic performance. In this work, a series of well-defined single-site Ni-grafted TiO2 photocatalysts with unique and specific coordination environments, 2,2'-bipyridine-Ni-O-TiO2 (T-Ni Bpy) and 2-Phenylpyridine-Ni-O-TiO2 (T-Ni Phpy), were constructed with the methods of surface organometallic chemistry combined with surface ligand exchange for visible-light-induced photocatalytic hydrogen evolution reaction (HER). A prominent rate of 33.82 µmol ⋅ g-1 ⋅ h-1 and a turnover frequency of 0.451 h-1 for Ni are achieved over the optimal catalyst T-Ni Bpy for HER, 260-fold higher than those of Ni-O-TiO2 . Fewer electrons trapped oxygen vacancies and a larger portion of long-lived photogenerated electrons (>3 ns, ~52.9 %), which were demonstrated by the electron paramagnetic resonance and femtosecond transient IR absorption, correspond to the photocatalytic HER activity over the T-Ni Bpy. The number of long-lived free electrons injected from the Ni photoabsorber to the conduction band of TiO2 is one of the determining factors for achieving the excellent HER activity.

7.
Nat Plants ; 9(9): 1547-1557, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653340

RESUMO

The major light-harvesting complex of photosystem II (LHCII) has a dual regulatory function in a process called non-photochemical quenching to avoid the formation of reactive oxygen. LHCII undergoes reversible conformation transitions to switch between a light-harvesting state for excited-state energy transfer and an energy-quenching state for dissipating excess energy under full sunshine. Here we report cryo-electron microscopy structures of LHCII in membrane nanodiscs, which mimic in vivo LHCII, and in detergent solution at pH 7.8 and 5.4, respectively. We found that, under low pH conditions, the salt bridges at the lumenal side of LHCII are broken, accompanied by the formation of two local α-helices on the lumen side. The formation of α-helices in turn triggers allosterically global protein conformational change, resulting in a smaller crossing angle between transmembrane helices. The fluorescence decay rates corresponding to different conformational states follow the Dexter energy transfer mechanism with a characteristic transition distance of 5.6 Å between Lut1 and Chl612. The experimental observations are consistent with the computed electronic coupling strengths using multistate density function theory.


Assuntos
Oxigênio , Tilacoides , Regulação Alostérica , Microscopia Crioeletrônica , Transferência de Energia
8.
Comput Inform Nurs ; 41(10): 789-795, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432107

RESUMO

Few nursing informatics studies focus on selecting nursing diagnoses for critical patients. The absence of data about nursing clinical judgment in the care of patients with cerebral hemorrhage greatly hinders research progress in evidence-based care. A stratified, retrospective study analyzed 115 electronic "intelligent" nursing information system nurse assessments and nursing diagnoses. Data were documented from April 2019 to November 2020 for critically ill patients admitted with cerebral hemorrhage in a 10-bed medical ICU at a 1500-bed tertiary facility, Henan Honliv Hospital, in Henan Province, China. In the selection of nursing diagnoses among nurses of stratified competencies (novice to expert), novice and experienced nurses were found to have significant variances in selecting nursing diagnoses for critically ill patients with cerebral hemorrhage. Novice nurses more frequently selected the Activity Intolerance Risk diagnosis as an initial diagnosis ( P = .025). Experienced nurses selected the Fluid Volume Excess Risk diagnosis more frequently ( P = .003). Consequently, nursing information systems are important in evaluating professional practice. The access to structured, standardized nursing data for the complete nursing process enables nurse managers to comprehensively analyze the nursing care given to patients, the distribution of patient nursing diagnoses, and the status of patient care risks.

9.
J Am Chem Soc ; 145(26): 14190-14195, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37310385

RESUMO

Several dumbbell conjugates featuring M3N@Ih-C80 (M = Sc, Y) and C60 were prepared to systematically investigate interfullerene electronic interactions and excited state dynamics. From electrochemical investigations, we concluded that the redox potentials of our M3N@Ih-C80 (M = Sc, Y) dumbbells depend largely on the interfullerene electronic interactions. Assisted by DFT calculation, the unique role of metal atoms was highlighted. Most importantly, ultrafast spectroscopy experiments revealed symmetry-breaking charge separation in Sc3N@C80-dumbbell to yield an unprecedented (Sc3N@C80)•+-(Sc3N@C80)•- charge separated state. This is, to the best of our knowledge, the first time that symmetry-breaking charge separation following photoexcitation is corroborated in a fullerene system. As such, our work shed light on the significance of interfullerene electronic interactions and their uniqueness for modulating excited state properties.

10.
J Phys Chem Lett ; 14(20): 4657-4665, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37167104

RESUMO

Due to the strong Coulomb interaction, the optical and electrical properties of two-dimensional transition metal dichalcogenides (TMDCs) are greatly determined by the emergence of many-body complexes such as excitons or trions. To fully realize the potential functionalities of these atomically thin materials, a comprehensive understanding of their many-body interaction mechanism is essential. Here, using the advanced femtosecond two-dimensional electronic spectroscopy technique combined with broadband transient absorption spectroscopy, a strong electron-exciton coupling effect in monolayer WSe2 following the ultrafast photoexcitation is revealed. We demonstrate that such many-body complexes can be generated effectively through the band-edge optical excitation, with a ∼1.5 ps stabilization process. The coherent optical phonon plays a dominant role in this electron-exciton interaction, and the coherence of the electron (exciton)-phonon coupling can last for ∼4.5 ps. This finding offers new insight into the formation mechanism of photoinduced many-body complexes in TMDCs.

11.
Nanotechnology ; 34(23)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36877995

RESUMO

In this work, ultrafast carrier dynamics of mechanically exfoliated 1T-TiSe2flakes from the high-quality single crystals with self-intercalated Ti atoms are investigated by femtosecond transient absorption spectroscopy. The observed coherent acoustic and optical phonon oscillations after ultrafast photoexcitation reveal the strong electron-phonon coupling in 1T-TiSe2. The ultrafast carrier dynamics probed in both visible and mid-infrared regions indicate that some photogenerated carriers localize near the intercalated Ti atoms and form small polarons rapidly within several picoseconds after photoexcitation due to the strong and short-range electron-phonon coupling. The formation of polarons leads to a reduction of carrier mobility and a long-time relaxation process of photoexcited carriers for several nanoseconds. The formation and dissociation rates of the photoinduced polarons are dependent on both the pump fluence and the thickness of TiSe2sample. This work offers new insights into the photogenerated carrier dynamics of 1T-TiSe2, and emphasizes the effects of intercalated atoms on the electron and lattice dynamics after photoexcitation.

12.
J Am Chem Soc ; 145(10): 5769-5777, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863033

RESUMO

A series of novel surface Ru-H bipyridine complexes-grafted TiO2 nanohybrids were for the first time prepared by a combined procedure of surface organometallic chemistry with post-synthetic ligand exchange for photocatalytic conversion of CO2 to CH4 with H2 as electron and proton donors under visible light irradiation. The selectivity toward CH4 increased to 93.4% by the ligand exchange of 4,4'-dimethyl-2,2'-bipyridine (4,4'-bpy) with the surface cyclopentadienyl (Cp)-RuH complex and the CO2 methanation activity was enhanced by 4.4-fold. An impressive rate of 241.2 µL·g-1·h-1 for CH4 production was achieved over the optimal photocatalyst. The femtosecond transient IR absorption results demonstrated that the hot electrons were fast injected in 0.9 ps from the photoexcited surface 4,4'-bpy-RuH complex into the conduction band of TiO2 nanoparticles to form a charge-separated state with an average lifetime of ca. 50.0 ns responsible for the CO2 methanation. The spectral characterizations indicated clearly that the formation of CO2•- radicals by single electron reduction of CO2 molecules adsorbed on surface oxygen vacancies of TiO2 nanoparticles was the most critical step for the methanation. Such radical intermediates were inserted into the explored Ru-H bond to generate Ru-OOCH species and finally CH4 and H2O in the presence of H2.

13.
Angew Chem Int Ed Engl ; 62(19): e202302050, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36914574

RESUMO

All-solid-state Z-Scheme photocatalysts have attracted significant attention due to their great potential for solar fuel production. However, delicately coupling two individual semiconductors with a charge shuttle by a material strategy remains a challenge. Herein, we demonstrate a new protocol of natural Z-Scheme heterostructures by strategically engineering the component and interfacial structure of red mud bauxite waste. Advanced characterizations elucidated that the hydrogen-induced formation of metallic Fe enabled the effective Z-Scheme electron transfer from γ-Fe2 O3 to TiO2 , leading to the significantly boosted spatial separation of photo-generated carriers for overall water splitting. To the best of our knowledge, it is the first Z-Scheme heterojunction based on natural minerals for solar fuel production. Thus our work provides a new avenue toward the utilization of natural minerals for advanced catalysis applications.

14.
Curr Med Sci ; 42(5): 1033-1045, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36260266

RESUMO

OBJECTIVE: MicroRNA (miRNA/miR)-633 is dysregulated in several types of cancers and is involved in tumorigenesis. However, the function and role of this miRNA in gastric cancer (GC) are not fully understood. The aim of the present study was to evaluate miR-633 expression in GC cell lines and in GC tissue vs. adjacent normal tissue, and to determine its association with clinicopathological data. This work was extended to investigate the effects of miR-633 overexpression on tumor cells in vitro. METHODS: Reverse transcription-quantitative PCR (RT-qPCR) was used to detect and compare the expression level of miR-633 in GC cells, as well as in GC and normal adjacent tissue samples. The clinical significance of miR-633 was also analyzed. MiR-633 lentivirus (LV-miR-633) and negative control lentivirus (LV-NC) were generated and used to transduce SGC-7901 and HGC-27 GC cells in order to analyze the effect of miR-633 on their phenotype. The effects of miR-633 overexpression on GC cell proliferation, apoptosis, migration and invasion were investigated. The target gene of miR-633 was predicted, then confirmed using a dual luciferase reporter gene assay, RT-qPCR and Western blotting. RESULTS: MiR-633 was significantly downregulated in GC cell lines, as well as in GC tissue compared with adjacent normal tissue. Moreover, miR-633 expression was associated with the tumor/node/metastasis (TNM) stage, invasion depth, Borrmann classification and lymph node metastasis (P<0.05). Compared with the LV-NC group, transduction with LV-miR-633 reduced the proliferation, the number of clones, the wound healing rate, the number of invading cells and the number of cells in the G1 phase of the cell cycle (P<0.01). LV-miR-633 also increased the apoptosis rate (P<0.01). The expression level of mitogen-activated protein kinase (MAPK) 1, high-mobility group box 3 (HMGB3), claudin 1 (CLDN1) and MAPK13 were downregulated in LV-miR-633-transduced cells (P<0.01). The dual luciferase reporter assay confirmed that the 3'-untranslated region of MAPK1 was the target site of miR-633 (P<0.01). CONCLUSION: MiR-633 acts as a tumor suppressor in GC, and its expression level is associated with TNM stage, invasion depth, Borrmann type and lymph node metastasis. Overexpression of miR-633 inhibits the proliferation and migration of GC cells and induces apoptosis and cell cycle arrest at the in G1 phase. In addition, miR-633 negatively regulates the expression of MAPK1, HMGB3, CLDN1 and MAPK13 and directly targets MAPK1.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Metástase Linfática , Invasividade Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , Claudina-1/genética , Claudina-1/metabolismo , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões não Traduzidas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo
15.
Angew Chem Int Ed Engl ; 61(51): e202211469, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36264279

RESUMO

Nitrate is an important raw material for chemical fertilizers, but it is industrially manufactured in multiple steps at high temperature and pressure, urgently motivating the design of a green and sustainable strategy for nitrate production. We report the photosynthesis of nitrate from N2 and O2 on commercial TiO2 in a flow reactor under ambient conditions. The TiO2 photocatalyst offered a high nitrate yield of 1.85 µmol h-1 as well as a solar-to-nitrate energy conversion efficiency up to 0.13 %. We combined reactivity and in situ Fourier transform infrared spectroscopy to elucidate the mechanism of nitrate formation and unveil the special role of O2 in N≡N bond dissociation. The mechanistic insight into charge-involved N2 oxidation was further demonstrated by in situ transient absorption spectroscopy and electron paramagnetic resonance. This work exhibits the mechanistic origin of N2 photooxidation and initiates a potential method for triggering inert catalytic reactions.

16.
Biophys J ; 121(21): 4109-4118, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181266

RESUMO

The rhodopsin mimic is a chemically synthetized complex with retinyl Schiff base (RSB) formed between protein and the retinal chromophore that can mimic the natural rhodopsin-like protein. The artificial rhodopsin mimic is more stable and designable than the natural protein and hence has wider uses in photon detection devices. The mimic structure RSB, like the case in the actual rhodopsin-like protein, undergoes isomerization and protonation throughout the photoreaction process. As a result, understanding the dynamics of the RSB in the photoreaction process is critical. In this study, the ultrafast transient absorption spectra of three mutants of the cellular retinoic acid-binding protein II-based rhodopsin mimic at acidic environment were recorded, from which the related excited-state dynamics of the all-trans protonated RSB (AT-PRSB) were investigated. The transient fluorescence spectra measurements are used to validate some of the dynamic features. We find that the excited-state dynamics of AT-PRSB in three mutants share a similar pattern that differs significantly from the dynamics of 15-cis PRSB of the rhodopsin mimic in neutral solution. By comparing the dynamics across the three mutants, we discovered that the aromatic residues near the ß-ionone ring structure of the retinal may help stabilize the AT-PRSB and hence slow down its isomerization rate. The experimental results provide implications on designing a rhodopsin-like protein with significant infrared fluorescence, which can be particularly useful in the applications in biosensing or bioimaging in deeper tissues.


Assuntos
Rodopsina , Bases de Schiff , Rodopsina/química , Bases de Schiff/química , Isomerismo , Retina , Fótons , Retinaldeído/química
17.
Pharm Biol ; 60(1): 1566-1577, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35952389

RESUMO

CONTEXT: Urolithin A (UroA) can inhibit the growth of many human cancer cells, but it has not be reported if UroA inhibits nasopharyngeal carcinoma (NPC) cells. OBJECTIVE: To explore the inhibitory effect of UroA on NPC and potential mechanism in vitro. MATERIALS AND METHODS: RNA-sequencing-based mechanistic prediction was conducted by comparing KEGG enrichment of 40 µM UroA-treated for 24 h with untreated CNE2 cells. The untreated cells were selected as control. After NPC cells were treated with 20-60 µM UroA, proliferation, migration and invasion of were measured by colony formation, wound healing and transwell experiments. Apoptosis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) were measured by flow cytometry, Hoechst 33342, Rhodamine 123, JC-1 staining and ROS assay methods, respectively. Gene and protein expression were measured by RT-qPCR and Western blotting assay. RESULTS: RNA-sequencing and KEGG enrichment revealed UroA mainly altered the ECM receptor interaction pathway. UroA inhibited cells proliferation, epithelial-mesenchymal-transition pathway, migration and invasion with IC50 values of 34.72 µM and 44.91 µM, induced apoptosis, MMP depolarization and increase ROS content at a concentration of 40 µM. UroA up-regulated E-cadherin, Bax/Bcl-2, c-caspase-3 and PARP proteins, while inhibiting COL4A1, MMP2, MMP9, N-cadherin, Vimentin and Snail proteins at 20-60 µM. Moreover, co-treatment of UroA (40 µM) and NAC (5 mM) could reverse the effect of UroA on apoptosis-related proteins. DISCUSSION AND CONCLUSIONS: RNA-sequencing technology based on bioinformatic analyses may be applicable for studiying the mechanism of drugs for tumour treatment.


Assuntos
Apoptose , Neoplasias Nasofaríngeas , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cumarínicos , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , RNA/farmacologia , RNA/uso terapêutico , Espécies Reativas de Oxigênio
18.
Nat Commun ; 13(1): 4245, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869136

RESUMO

Ferroelectrics are considered excellent photocatalytic candidates for solar fuel production because of the unidirectional charge separation and above-gap photovoltage. Nevertheless, the performance of ferroelectric photocatalysts is often moderate. A few studies showed that these types of photocatalysts could achieve overall water splitting. This paper proposes an approach to fabricating interfacial charge-collecting nanostructures on positive and negative domains of ferroelectric, enabling water splitting in ferroelectric photocatalysts. The present study observes efficient accumulations of photogenerated electrons and holes within their thermalization length (~50 nm) around Au nanoparticles located in the positive and negative domains of a BaTiO3 single crystal. Photocatalytic overall water splitting is observed on a ferroelectric BaTiO3 single crystal after assembling oxidation and reduction cocatalysts on the positively and negatively charged Au nanoparticles, respectively. The fabrication of bipolar charge-collecting structures on ferroelectrics to achieve overall water splitting offers a way to utilize the energetic photogenerated charges in solar energy conversion.

20.
Front Plant Sci ; 13: 833041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519805

RESUMO

Weaker temporal variation of soil moisture can improve crop water use efficiency (WUE), but its physiological mechanism was still unclear. To explore the mechanism, an organized experiment was conducted in Beijing from June to September. From the jointing stage to maturity stage of maize, stable soil moisture (SSM) and fluctuating soil moisture (FSM) were established with Pressure Potential Difference-Crop Initiate Drawing Water (PCI) and manual irrigation (MI), respectively, to explore the physiological mechanism of SSM to improve maize WUE. Among them, PCI treatments were set with 3 pressure differences of -5, -10, and -15 kPa, and MI treatment was watering every 3 days with the irrigation amount of 9.3 mm. The results showed that (1) after water treatment, the average soil water content of PCI-5 kPa, PCI-10 kPa, PCI-15 kPa, and MI treatments were 53% field capacity (FC), 47, 38, and 78% FC, respectively. It was SSM with weak temporal variation under PCI treatments, and FSM with medium temporal variation under MI treatment. (2) PCI treatments reduced the content of proline, malondialdehyde, and abscisic acid in each organ of maize. (3) Compared with FSM 78% FC, the maize root activity at the filling stage of 53% FC SSM and 47% FC SSM increased significantly by 57.1 and 28.6%, respectively, and the carbon isotope discrimination value (Δ13C) in bracts of the two treatments increased by 18.3 and 10.4%, respectively. (4) There was a very significant positive correlation between WUE based on biomass (WUEb) and Δ13C in bracts. In conclusion, a large temporal variation of soil moisture was an important factor that caused water stress in maize. Under SSM treatments, the accumulation of abscisic acid, proline, and malondialdehyde was synergistically reduced. SSM improved the WUE of maize by alleviating short-term soil water stress caused by the fluctuation of soil moisture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...