Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 65(6): 100553, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704027

RESUMO

Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.

2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 68-71, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38433634

RESUMO

Terminally ill patients face multiple difficulties in home care.Home-based palliative care adhering to the concept of whole-person,whole-family,whole-team,and whole-course care is able to meet the needs of terminally ill patients and their families.In this paper,we reported the care history and home-based palliative care process of a patient with end-stage breast tumor and summarized the experience,aiming to provide reference for the future work of home-based palliative care.


Assuntos
Cuidados Paliativos , Humanos
3.
J Nanobiotechnology ; 21(1): 145, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37127609

RESUMO

Colon-targeted oral drug delivery systems (CDDSs) are desirable for the treatment of ulcerative colitis (UC), which is a disease with high relapse and remission rates associated with immune system inflammation and dysregulation localized within the lining of the large bowel. However, the success of current available approaches used for colon-targeted therapy is limited. Budesonide (BUD) is a corticosteroid drug, and its rectal and oral formulations are used to treat UC, but the inconvenience of rectal administration and the systemic toxicity of oral administration restrict its long-term use. In this study, we designed and prepared colon-targeted solid lipid nanoparticles (SLNs) encapsulating BUD to treat UC by oral administration. A negatively charged surfactant (NaCS-C12) was synthesized to anchor cellulase-responsive layers consisting of polyelectrolyte complexes (PECs) formed by negatively charged NaCS and cationic chitosan onto the SLNs. The release rate and colon-specific release behavior of BUD could be easily modified by regulating the number of coated layers. We found that the two-layer BUD-loaded SLNs (SLN-BUD-2L) with a nanoscale particle size and negative zeta potential showed the designed colon-specific drug release profile in response to localized high cellulase activity. In addition, SLN-BUD-2L exhibited excellent anti-inflammatory activity in a dextran sulfate sodium (DSS)-induced colitis mouse model, suggesting its potential anti-UC applications.


Assuntos
Celulases , Colite Ulcerativa , Colite , Nanopartículas , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Budesonida , Colo , Colite/induzido quimicamente , Celulases/uso terapêutico , Modelos Animais de Doenças
4.
Int J Biol Macromol ; 155: 411-420, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224176

RESUMO

Natural polymers like polysaccharides, polypeptides and their derivatives are broadly applied in drug delivery due to excellent biocompatibility and biodegradability. In this study, the dissolving tablets, formed with carboxymethylcellulose/poly-l-lysine/tripolyphosphate (CMC/PLL/TPP) complex, were prepared using metformin hydrochloride (MetHCl) as model drug. Confocal laser scanning microscopy observation manifested that FITC-labeled PLL interacted with CMC and formed a uniform interior microstructure. Scanning electron microscope images showed the drug-loaded tablets had well-formed shapes with smooth surfaces. MetHCl embedded interior the microstructures of the tablets and represented in a crystal form. Thermo-gravimetric analysis and differential scanning calorimetry indicated that the drug-loaded tablets had stable thermal properties with less moisture content (3.52%). Fourier transform infrared spectrometer confirmed that the CMC/PLL/TPP complex was fabricated via the electrostatic interactions between -NH3+, -COO- and -[P2O54-]- groups. The drug-loaded tablets had a high drug loading efficiency of 85.76% and drug encapsulation efficiency of 81.47%, and a shorter wetting time of 2.16 min in SSF (pH 6.8) and lower swelling ratio of 233.34%. The drug loaded in the samples could be released completely within 10 min in simulated saliva fluid (SSF pH 6.8), indicating a rapid drug release and dissolving profile in the environment, which could be developed for dissolving tablets.


Assuntos
Carboximetilcelulose Sódica/química , Hipoglicemiantes/química , Metformina/química , Polilisina/química , Polímeros/química , Polifosfatos/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Humanos , Hipoglicemiantes/metabolismo , Metformina/metabolismo , Solubilidade , Comprimidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...