Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 19(5): e202200064, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35333437

RESUMO

Actinomycetes have being regarded as a treasure reservoir of various bioactive secondary metabolites and devoted many antibiotics in clinicals. Amycolatopsis sp. YNNP 00208 was isolated from a soil sample collected in Gaoligong Mountain area, Yunnan Province, China. Chemical investigation of its fermentation broth led to a new amide, baoshanmycin (1), and a new furanone derivative, 3-(1,3-dihydroxybutyl)-4-methylfuran-2(H)-one (2), together with eight known compounds, including two amides (3-4), four cyclic dipeptides (5-8), and two deoxyribonucleosides (9-10). Their structures were established on basis of the 1D- and 2D-NMR spectroscopic data, along with the HR-ESI-MS experiments. Baoshanmycin (1) showed moderate antimicrobial activities against Candida albicans, and weak activities against Staphylococcus aureus, multi-drug resistant Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, fluconazole-resistant Candida albicans. Baoshanmycin (1) presented strong antioxidant activity and moderate anti-acetylcholinesterase activity. The other compound 3-(1,3-dihydroxybutyl)-4-methylfuran-2(H)-one (2) and the known compounds (3-10) showed moderate antioxidant activity.


Assuntos
Actinobacteria , Staphylococcus aureus Resistente à Meticilina , Actinobacteria/metabolismo , Amycolatopsis , Antibacterianos/química , Antioxidantes/metabolismo , China , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Solo
2.
Chem Biodivers ; 18(9): e2100460, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34369658

RESUMO

A new compound named koninginin W (1) and four known polyketides (2-5) were isolated from endophytic fungus Trichoderma koningiopsis YIM PH30002 of Panax notoginseng. The structures of 1 - 5, including absolute configuration of 1, were elucidated on the detailed analysis of the HR-ESI-MS, 1D and 2D NMR, and X-ray crystallographic data. Koninginin W (1) presented weak antibacterial activity against Escherichia coli, Bacillus subtilis and Salmonella typhimurium.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Trichoderma/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Testes de Sensibilidade Microbiana , Conformação Molecular
3.
Huan Jing Ke Xue ; 40(6): 2546-2555, 2019 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854645

RESUMO

The hygroscopicity of aerosols has an important influence on atmospheric visibility and is one of the main causes of haze pollution. Based on observations of the aerosol hygroscopic growth factor (GF), water soluble inorganic ions, and organic carbon/elemental carbon (OC/EC) data during haze weather from April 17 to May 21, in 2014, the hygroscopic properties of aerosols and corresponding effects on haze in Nanjing were analyzed. The results showed that the distribution of GF was bimodal and varied from 1.12 to 1.64. With the increase of particle size, the average hygroscopic growth factor (GFmean) changed less and the standard deviation of wettability (σ) increased gradually; meanwhile, the degree of external mixing of chemical components increased gradually. The hygroscopicity of aerosol particles in the day was better than that at night, but the mixing degree was weaker than that at night; in non-haze weather, the hygroscopicity of aerosol particles was stronger and the degree of external mixing was higher, while the hygroscopicity and mixing degree of haze particles showed opposite trends. With the increase of haze levels, the hygroscopicity of aerosol particles grew weaker and the degree of external mixing decreased further. Relative humidity can have a significant impact on the chemical components of aerosols and their hygroscopic capacity. Under a low humidity background, the main chemical components of aerosols included NH4+, NO3-, SO42-, OC, and EC, and the content of OC/EC in aerosols during haze days was more abundant; in haze weather with low relative humidity, abundant organic matter was the main reason for the decrease of the moisture absorption capacity of small-scale aerosols. The level of relative humidity in the haze weather was also an important factor affecting the hygroscopic capacity of aerosols. The contents of (NH4)2SO4, OC, and insoluble substances in aerosols were the highest, followed by NH4NO3. The contents of these chemical components showed obvious diurnal variation characteristics, which resulted in significant diurnal variation of the hygroscopicity of the aerosols. κchem calculated by the chemical composition and κmean acquired by observations using H-TDMA showed good consistency, and the correlation coefficient was 0.8903. In haze weather, the correlation between them was further enhanced. Therefore, the major chemical components of aerosols could be used to predict the hygroscopic properties of aerosols.

4.
J Phys Chem A ; 123(25): 5367-5377, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31199633

RESUMO

New particle formation (NPF) by gas-particle conversion is the main source of atmospheric aerosols. Highly oxygenated organic molecules (HOMs) and sulfuric acid (SA) are important NPF participants. 2-Methylglyceric acid (MGA), a kind of HOMs, is a tracer of isoprene-derived secondary organic aerosols. The nucleation mechanisms of MGA with SA were studied using density functional theory and atmospheric cluster dynamics simulation in this study, along with that of MGA with methanesulfonic acid (MSA) as a comparison. Our theoretical works indicate that the (MGA)(SA) and (MGA)(MSA) clusters are the most stable ones in the (MGA) i(SA) j ( i = 1-2, j = 1-2) and (MGA) i(MSA) j ( i = 1-2, j = 1-2) clusters, respectively. Both the formation rates of (MGA)(SA) and (MGA)(MSA) clusters are quite large and could have significant contributions to NPF. The results imply that the homomolecular nucleation of MGA is unlikely to occur in the atmosphere, and MGA and SA can effectively contribute to heteromolecular nucleation mainly in the form of heterodimers. MSA exhibits properties similar to SA in its ability to form clusters with MGA but is slightly weaker than SA.

5.
Huan Jing Ke Xue ; 39(6): 2512-2520, 2018 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965605

RESUMO

PM2.5 is generally considered as a main pollutant causing the formation of haze. Based on meteorological parameters, aerosol distribution, and PM monitoring data in Taiyuan during November and December 2016, the characteristics of the key size spectrum of PM2.5 affecting haze were discussed. During the observation period, haze was frequent and serious. Heavy haze time accounts for 25.35% of the total haze time. Haze events occurred frequently when the relative humidity was greater than 80% and wind speed was less than 1.5 m·s-1, especially for severe haze. Mild and moderate level haze occurred frequently when the relative humidity was less than 80% and greater than 40% and when wind speed was less than 1.5 m·s-1. Slight haze mainly occurred when the relative humidity was 20%-40% and the wind speed was 1.25-2.55 m·s-1. The average mass concentration of PM2.5 was 209.45 µg·m-3, which was three times the level during non-haze events. With an increase in the haze level, the mass concentration of PM2.5 and the ratio of PM2.5/PM10 increased. PM1 was the key particle size affecting haze in the low humidity environment. PM0.5 was the key particle size that affects slight haze, mild haze, and moderate haze in the high humidity environment, while PM1 was the key particle size that affects heavy haze. The contribution of surface concentration to visibility decreased with high humidity, but the particle size increased by moisture absorption leading to an increase in the extinction efficiency factor, which compensated for the lack of surface concentration. The increase in the particle size parameter was an important factor for PM2.5 affecting the haze pollution with high humidity.

6.
IUBMB Life ; 67(10): 768-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26399456

RESUMO

MicroRNA-199a/b-3p is downregulated in several types of aggressive cancer, and its decrement significantly correlates with poor survival. Here, we aim to investigate the biological function of miR-199a/b-3p and its regulation of target genes in breast cancer cells with highly metastatic potential. In addition, we found that miR-199a/b-3p expression was much lower in MDA-MB-231, CAL120, and HCC1395 breast cancer cells with highly metastatic potential. Functional assays showed that restored miR-199a/b-3p expression inhibited MDA-MB-231 cell growth, cell-cycle progression, migration, and invasion. In addition, we experimentally demonstrated that PAK4 was the direct target of miR-199a/b-3p, hypo-expression of PAK4 suppressed proliferation, migration and invasion of MDA-MB-231 cells, and overexpression of PAK4 significantly rescued the inhibitory effect of miR-199a/b-3p on MDA-MB-231 cell growth, migration, and invasion. Further, we also observed that miR-199a/b-3p could inactivate the PAK4/MEK/ERK signaling pathway. Thus, miR-199a/b-3p functions as a tumor suppressor and has an important role in breast cancer metastasis through PAK4/MEK/ERK signaling pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , MicroRNAs/fisiologia , Quinases Ativadas por p21/metabolismo , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Neoplasias da Mama , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Interferência de RNA , Quinases Ativadas por p21/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...