Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169501, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145682

RESUMO

As climate changes increasingly influence species distributions, ecosystem functions, and biodiversity, the urgency to understand how species' ranges shift under those changes is great. Species distribution models (SDMs) are vital approaches that can predict species distributions under changing climates. However, SDMs based on the species' current occurrences may underestimate the species' climatic tolerances. Integrating species' realized niches at different periods, also known as multi-temporal calibration, can provide an estimation closer to its fundamental niche. Based on this, we further proposed an integrated framework that combines eco-evolutionary data and SDMs (phylogenetically-informed SDMs) to provide comprehensive predictions of species range shifts under climate change. To evaluate our approach's performance, we applied it to a group of related species, the Chrysanthemum zawadskii species complex (Anthemidae, Asteracee). First, we investigated the niche differentiation between species and intraspecific lineages of the complex and estimated their rates of niche evolution. Next, using both standard SDMs and our phylogenetically-informed SDMs, we generated predictions of suitability areas for all species and lineages and compared the results. Finally, we reconstructed the historical range dynamics for the species of this complex. Our results showed that the species and intraspecific lineages of the complex had varying degrees of niche differentiation and different rates of niche evolution. Lineage-level SDMs can provide more realistic predictions for species with intraspecific differentiation than species-level models can. The phylogenetically-informed SDMs provided more complete environmental envelopes and predicted broader potential distributions for all species than the standard SDMs did. Range dynamics varied among the species that have different rates of niche evolution. Our framework integrating eco-evolutionary data and SDMs contributes to a better understanding of the species' responses to climate change and can help to make more targeted conservation efforts for the target species under climate change, particularly for rare species.


Assuntos
Mudança Climática , Ecossistema , Biodiversidade
2.
Cladistics ; 38(6): 663-683, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35766338

RESUMO

A species complex is an assemblage of closely related species with blurred boundaries, and from which species could arise from different speciation processes and/or a speciation continuum. Such a complex can provide an opportunity to investigate evolutionary mechanisms acting on speciation. The Chrysanthemum zawadskii species complex in China, a monophyletic group of Chrysanthemum, consists of seven species with considerable morphological variation, diverse habitats and different distribution patterns. Here, we used Hyb-Seq data to construct a well-resolved phylogeny of the C. zawadskii complex. Then, we performed comparative analyses of variation patterns in morphology, ecology and distribution to investigate the roles of geography and ecology in this complex's diversification. Lastly, we implemented divergence time estimation, species distribution modelling and ancestral area reconstruction to trace the evolutionary history of this complex. We concluded that the C. zawadskii complex originated in the Qinling-Daba mountains during the early Pliocene and then spread west and northward along the mountain ranges to northern China. During this process, geographical and ecological factors imposing different influences resulted in the current diversification and distribution patterns of this species complex, which is composed of both well-diverged species and diverging lineages on the path of speciation.


Assuntos
Chrysanthemum , Filogenia , Chrysanthemum/genética , Geografia , Ecossistema , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...