Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(21): 14886-14893, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38716104

RESUMO

The phase structure of a catalyst plays a crucial role in determining the catalytic activity. In this study, a facile phosphorization process is employed to achieve the in situ phase transformation from single-phase Co3O4 to CoO/CoP hybrid phases. Characterization techniques, including XRD, BET, SEM, and TEM, confirm the retention of the mesoporous nature during the phase transformation, forming porous CoO/CoP heterointerfaces. Strong charge transfer is observed across the CoO/CoP heterointerface, indicating a robust interaction between the hybrid phases. The CoO/CoP hybrid exhibits significantly enhanced catalytic activity for the alkaline hydrogen evolution reaction (HER) compared to pristine Co3O4. Density Functional Theory (DFT) calculations reveal that the elimination of the band gap in the spin-down band of Co in CoO/CoP contributes to the observed high HER activity. The findings highlight the potential of CoO/CoP hybrids as efficient catalysts for HER, and contribute to the advancement of catalyst design for sustainable energy applications.

2.
RSC Adv ; 14(15): 10229-10243, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38544943

RESUMO

Doping active agents into metal-organic frameworks (MOFs) is widely sought after owing to its potential to enhance adsorption and photocatalytic efficiency, surpassing the potential of bare frameworks. This study incorporated a catalytically active NS-ligand (1,2-benzisothiazolin-3-one) into a very stable and porous PCN-600 MOF via an in situ synthesis approach. The NS-ligand, which matched with the host ligands of PCN-600, enabled the highly efficient synthesis of NS-co-doped MOFs. The pristine PCN-600 framework and morphology were retained in the MOF altered with the NS-ligand, as demonstrated by XRD, FTIR, and SEM characterizations. A high electron density was generated due to the synergistic effect between the defects in the NS-co-doped photocatalyst and engineered active sites. This facilitated the adsorption-assisted photocatalytic decontamination of metronidazole with an 87% removal by PCN-600-NS-10 compared to 43% by pristine PCN-600 within a total time of 150 min. The MOF doped with the NS-ligand exhibited a reduced band gap and enhanced adsorption and photocatalytic capabilities compared to pristine PCN-600. The impact of operational parameters, such as catalyst dosage, initial solution pH, and MNZ concentration, was also explored. Pseudo-second and pseudo-first order models were found to describe the adsorption and degradation kinetics of metronidazole and the Dubinin-Radushkevich model was found to fit the equilibrium adsorption results. The thermodynamic characteristics of adsorption processes (ΔGads, ΔHads, and ΔSads) demonstrated that adsorption was physical, spontaneous, and exothermic and resulted in increased entropy.

3.
Angew Chem Int Ed Engl ; 63(1): e202315340, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37985934

RESUMO

Despite the fact that d-band center theory links the d electron structure of transition metals to their catalytic activity, it is yet unknown how the synergistic effect of multi-d electrons impacts catalytic performance. Herein, novel LaNi1-x Cox Ru intermetallics containing 5d, 4d, and 3d electrons were prepared. In these compounds, the 5d orbital of La transfers electrons to the 4d orbital of Ru, which provides adsorption sites for H*. The 3d orbitals of Ni and Co interact with the 5d and 4d orbitals to generate an anisotropic electron distribution, which facilitates the adsorption and desorption of OH*. The synergistic effect of multi-d electrons ensures efficient catalytic activity. The optimized LaNi0.5 Co0.5 Ru has an overpotential of 43mV at 10 mA cm-2 for alkaline electrocatalytic hydrogen evolution reaction. Beyond offering a variety of new electrocatalysts, this work reveals the multi-d electron synergy in promoting catalytic reaction.

4.
Nanoscale ; 15(38): 15635-15642, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37721742

RESUMO

Scintillators with high spatial resolution at a low radiation dose rate are desirable for X-ray medical imaging. A low radiation dose rate can be achieved using a sufficiently thick scintillator layer to absorb the incident X-ray energy completely, however, often at the expense of low spatial resolution due to the issue of optical crosstalk of scintillation light. Therefore, to achieve high sensitivity combined with high-resolution imaging, a thick scintillator with perfect light guiding properties is in high demand. Herein, a new strategy is developed to address this issue by embedding liquid scintillators into lead-containing fiber-optical plates (FOPs, n = 1.5) via the siphon effect. The liquid scintillator is composed of perovskite quantum dots (QDs)/2,5-diphenyloxazole (PPO) and the non-polar high-refractive index (n = 1.66) solvent α-bremnaphthalene. Benefiting from the pixelated and thickness-adjustable scintillators, the proposed CsPbBr3 QDs/PPO liquid scintillator-based X-ray detector achieves a detection limit of 79.1 µGy s-1 and a spatial resolution of 4.6 lp mm-1. In addition, it displays excellent tolerance against radiation (>34 h) and shows outstanding stability under ambient conditions (>160 h). This strategy could also be applied to other liquid scintillators (such as CsPbCl3 QDs and Mn:CsPbCl3 QDs). The combination of high sensitivity, high spatial resolution and stability, easy fabrication and maintenance, and a reusable substrate matrix makes these liquid scintillators a promising candidate for practical X-ray medical imaging applications.

5.
Anal Chim Acta ; 1277: 341655, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604610

RESUMO

Although various metabolomic methods have been reported in recent years, simultaneous detection of hydrophilic and hydrophobic metabolites in a single analysis remains a technical challenge. In this study, based on the combination of hydrophilic interaction liquid chromatography (HILIC) and reversed phase liquid chromatography (RPLC), an online two-dimensional liquid chromatography/triple quadrupole mass spectrometry method (2D-LC/TQMS) was developed for the simultaneous analysis of hydrophilic and hydrophobic metabolites of various biological samples. The method can measure 417 biologically important metabolites (e.g., amino acids and peptides, pyrimidines, purines, monosaccharides, fatty acids and conjugates, organic dicarboxylic acids, and others) with logP values ranging from -10.3 to 21.9. The metabolites are involved in a variety of metabolic pathways (e.g., purine metabolism, pyrimidine metabolism, tyrosine metabolism, galactose metabolism, gluconeogenesis, and TCA cycle). The developed method has good intra- and inter-day reproducibility (RSD of retention time <2%, RSD of peak area <30%), good linearity (R2 > 0.9) and wide linear range (from 0.0025 µg/mL to 5 µg/mL). The applicability of the method was tested using different biological samples (i.e., plasma, serum, urine, fecal, seminal plasma and liver) and it was found that 208 (out of 417) identical metabolites were detected in all biological samples. Furthermore, the metabolomic method was applied to a case/control study of urinary of bladder cancer. Thirty differential metabolites were identified that were involved in carbohydrate and amino acid metabolism.


Assuntos
Cromatografia de Fase Reversa , Reprodutibilidade dos Testes , Cromatografia Líquida , Espectrometria de Massas , Interações Hidrofóbicas e Hidrofílicas
6.
Adv Mater ; 35(25): e2302007, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36994807

RESUMO

Nontrivial topological surface states (TSSs), which possess extraordinary carrier mobility and are protected by the bulk symmetry, have emerged as an innovative platform to search for efficient electrocatalysts toward hydrogen evolution reaction (HER). Here, a Sn-based nontrivial metal Ru3 Sn7 is prepared using electrical arc melting method. The results indicate that the (001) crystal family of Ru3 Sn7 possesses nontrivial TSSs with linear dispersion relation and large nontrivial energy window. Experimental and theoretical results demonstrate that nontrivial TSSs of Ru3 Sn7 can significantly boost charge transfer kinetics and optimize adsorption of hydrogen intermediates due to bulk symmetry-protected band structures. As expected, nontrivial Ru3 Sn7 exhibits superior HER activity to Ru, Pt/C, and trivial counterparts (e.g., Ru2 Sn3 , IrSn2 , and Rh3 Sn2 ) with higher ratios of noble metals. Furthermore, the wide pH-range activity of topologically nontrivial Ru3 Sn7 implies the robustness of its TSSs against pH variation during the HER. These findings provide a promising approach to the rational design of topologically nontrivial metals as highly efficient electrocatalysts.

7.
Biomimetics (Basel) ; 8(1)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36975334

RESUMO

The electrocatalytic hydrogen evolution activity of transition metal sulfide heterojunctions are significantly increased when compared with that of a single component, but the mechanism behind the performance enhancement and the preparation of catalysts with specific morphologies still need to be explored. Here, we prepared a Co9S8/MoS2 heterojunction with microsphere morphology consisting of thin nanosheets using a facile two-step method. There is electron transfer between the Co9S8 and MoS2 of the heterojunction, thus realizing the redistribution of charge. After the formation of the heterojunction, the density of states near the Fermi surface increases, the d-band center of the transition metal moves downward, and the adsorption of both water molecules and hydrogen by the catalyst are optimized. As a result, the overpotential of Co9S8/MoS2 is superior to that of most relevant electrocatalysts reported in the literature. This work provides insight into the synergistic mechanisms of heterojunctions and their morphological regulation.

8.
Heliyon ; 9(2): e13534, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846653

RESUMO

In order to effectively identify the key causative factors of civil aviation flight accidents, and establish a forward-looking effective prevention mechanism for flight accidents. Firstly, Corrected SHELLO model is established to classify the causes of civil aviation accidents in China (2015-2019) based on the integration of SHELL analysis model and Reason organization system concept. Secondly, in view of the randomness and uncertainty gray characteristics of the flight accidents inducing factors, the improved entropy gray correlation algorithm is established for the purpose of importance recognition, which combined with the characteristics of the data sample of inducement classification. Finally, the improved entropy gray correlation algorithm is used to identify and rank the key causative factors of flight accidents. The results showed that the flight accidents crucial causative factor is the human factors which we should pay more attention including the pilot perceptual errors, skill-based errors, decision errors and violation main factors, environmental and organizational factors also play an important role in inducing flight accidents, including complex terrain for approach landing and poor safety management mechanism factors. The method has great practical significance for identifying critical causative factors of flight accidents and improving flight safety.

9.
Nanoscale ; 15(7): 3550-3559, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723134

RESUMO

Efficient and low-cost transition metal single-atom catalysts (TMSACs) for hydrogen evolution reaction (HER) have been recognized as research hotspots recently with advances in delivering good catalytic activity without noble metals. However, the high-cost complex preparation of TMSACs and insufficient stability limited their practical applications. Herein, a simple top-down pyrolysis approach to obtain P-modified Co SACs loaded on the crosslinked defect-rich carbon nanosheets was introduced for alkaline hydrogen evolution, where Co atoms are locally confined before pyrolysis to prevent aggregation. Thereby, the abundant defects and the unsaturated coordination formed during the pyrolysis significantly improved the stability of the monatomic structure and reduced the reaction barrier. Furthermore, the synergy between cobalt atoms and phosphorus atoms was established to optimize the decomposition process of water molecules, which delivers the key to promoting the slow reaction kinetics of alkaline HER. As the result, the cobalt SAC exhibited excellent catalytic activity and stability for alkaline HER, with overpotentials of 70 mV and 192 mV at current densities of -10 mA cm-2 and -100 mA cm-2, respectively.

10.
Adv Sci (Weinh) ; 10(12): e2206995, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36806693

RESUMO

Li metal anode is considered as one of the most desirable candidates for next-generation battery due to its lowest electrochemical potential and high theoretical capacity. However, undesirable dendrite growth severely exacerbates the interfacial stability, thus damaging battery performance and bringing safety concerns. Here, an efficient strategy is proposed to stabilize Li metal anode by digesting dendrites sprout using a 3D flexible superlithiophilic membrane consisting of poly(vinylidene fluoride) (PVDF) and ZnCl2 composite nanofibers (PZEM) as a protective layer. Both the experimental studies and theoretical calculations show the origin of superlithiophilicity ascribed to a strong interaction between ZnCl2 and PVDF to form the ZnF bonds. The multifield physics calculation implies effective removal of local dendrite hotspots by PZEM via a more homogeneous Li+ flux. The PZEM-covered Li anode (PZEM@Li) exhibits superior Li deposition/stripping performance in a symmetric cell over 1100 cycles at a high current density of 5 mA cm-2 . When paired with LiFePO4 (LFP), PZEM@Li|LFP full cell remains stable over 1000 cycles at 2 C with a degradation rate of 0.0083% per cycle. This work offers a new route for efficient protection of Li metal anode for practical applications.

11.
Chem Asian J ; 18(2): e202201182, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36465037

RESUMO

Molybdenum diselenide and cobalt diselenide have been commonly implemented in electrocatalytic hydrogen evolution reaction (HER). However, there have been few research on the creation of their three-phase heterojunctions and the associated HER process. Herein, we constructed a three-phase heterostructure sample consisting of orthorhombic CoSe2 , cubic CoSe2 and MoSe2 and we investigated its HER performance. The sample shows microsphere morphology composed of nanosheets with interfacial interactions between the components. It possesses an overpotential of -136 mV at -10 mA cm-2 in acid medium, which is superior to that of single component and most two-phase heterostructures. Especially, the overpotential at -200 mA cm-2 is smaller than that of Pt/C. The excellent performance can be attributed to the d-orbital upshift of the Co active sites due to charge redistribution between the three-phase heterojunction and the optimization of the hydrogen free energy. This work provides inspiration for exploring the application of other multi-component heterojunctions in electrocatalytic hydrogen evolution.

12.
Small Methods ; 6(10): e2200900, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36002335

RESUMO

The construction of heterostructures is a versatile tactic to enhance catalytic activity. However, it is still elusive to realize the modulation of the interlayer spacing in this way to further improve the performance. Here, strong interfacial coupling between CoSe2 and MoSe2 by constructing CoSe2 /MoSe2 heterostructures is achieved. The interlayer spacing of MoSe2 is compressed by 0.3 Å. The enhanced charge transfer is validated by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. Coupled with the morphology of hollow microtubes, which can facilitate the exposure of active sites, CoSe2 /MoSe2 heterostructures reported here exhibit high activity (119 mV at 10 mA cm-2 ) and excellent stability with small degradation after 50 h operation, surpassing other analogous powdered electrocatalysts. This work sheds light on the importance of tuning the interlayer spacing to improve electrocatalytic activity.

13.
Angew Chem Int Ed Engl ; 61(32): e202206460, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657722

RESUMO

The discovery and identification of novel active sites are paramount for deepening the understanding of the catalytic mechanism and driving the development of remarkable electrocatalysts. Here, we reveal that the genuine active sites for the hydrogen evolution reaction (HER) in LaRuSi are Si sites, not the usually assumed Ru sites. Ru in LaRuSi has a peculiar negative valence state, which leads to strong hydrogen binding to Ru sites. Surprisingly, the Si sites have a Gibbs free energy of hydrogen adsorption that is near zero (0.063 eV). The moderate adsorption of hydrogen on Si sites during the HER process is also validated by in situ Raman analysis. Based on it, LaRuSi exhibits an overpotential of 72 mV at 10 mA cm-2 in alkaline media, which is close to the benchmark of Pt/C. This work sheds light on the recognition of real active sites and the exploration of innovative silicide HER electrocatalysts.

14.
Adv Mater ; 34(13): e2110631, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35040208

RESUMO

Amorphous and heterojunction materials have been widely used in the field of electrocatalytic hydrogen evolution due to their unique physicochemical properties. However, the current used individual strategy still has limited effects. Hence efficient tailoring tactics with synergistic effect are highly desired. Herein, the authors have realized the deep optimization of catalytic activity by a constructing crystalline-amorphous CoSe2 /CoP heterojunction. Benefiting from the strong electronic coupling at the interfaces, the d-band center of the material moves further down compared to its crystalline-crystalline counterpart, optimizing the valence state and the H adsorption of Co and lowering the kinetic barrier of hydrogen evolution reaction (HER). The heterojunction shows an overpotential of 65 mV to drive a current density of 10 mA cm-2 in the acidic medium. Besides, it also shows competitive properties in both neutral and basic media. This work provides inspiration for optimizing the catalytic activity through combining a crystalline and amorphous heterojunction, which can be implemented for other transition metal compound electrocatalysts.

15.
Angew Chem Int Ed Engl ; 60(43): 23388-23393, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34370386

RESUMO

PtSe2 is a typical noble metal dichalcogenide (NMD) that holds promising possibility for next-generation electronics and photonics. However, when applied in hydrogen evolution reaction (HER), it exhibits sluggish kinetics due to the insufficient capability of absorbing active species. Here, we construct PtSe2 /Pt heterointerface to boost the reaction dynamics of PtSe2 , enabled by an in situ electrochemical method. It is found that Se vacancies are induced around the heterointerface, reducing the coordination environment. Correspondingly, the exposed Pt atoms at the very vicinity of Se vacancies are activated, with enhanced overlap with H 1s orbital. The adsorption of H. intermediate is thus strengthened, achieving near thermoneutral free energy change. Consequently, the as-prepared PtSe2 /Pt exhibits extraordinary HER activity even superior to Pt/C, with an overpotential of 42 mV at 10 mA cm-2 and a Tafel slope of 53 mV dec-1 . This work raises attention on NMDs toward HER and provides insights for the rational construction of novel heterointerfaces.

16.
iScience ; 24(5): 102469, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34027323

RESUMO

Pulse laser has been widely used in both fundamental science and practical technologies. In this perspective, we highlight the employment of pulse laser ablation in air (LAA) in energy-related catalytic reactions. With LAA, samples are directly ablated in ambient air, which makes this technology facile to conduct. Materials can be modified by LAA in multiple aspects, such as morphology modulation, heterojunction fabrication, or defects engineering, which are desired features for energy-related catalytic reactions. We begin this perspective with a brief introduction of this technology, including the mechanism, the experimental setup, and the characteristic of laser-ablated materials. The recent works utilizing LAA are then summarized to prove the promising prospects of LAA in the energy field. Finally, several opportunities about the future usage of LAA are proposed and discussed.

17.
Angew Chem Int Ed Engl ; 60(22): 12360-12365, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33723912

RESUMO

Optimizing the hydrogen adsorption Gibbs free energy (ΔGH ) of active sites is essential to improve the overpotential of the electrocatalytic hydrogen evolution reaction (HER). We doped graphene-like Co0.85 Se with sulfur and found that the active sites are reversed (from cationic Co sites to anionic S sites), which contributed to an enhancement in electrocatalytic HER performance. The optimal S-doped Co0.85 Se composite has an overpotential of 108 mV (at 10 mA cm-2 ) and a Tafel slope of 59 mV dec-1 , which exceeds other reported Co0.85 Se-based electrocatalysts. The doped S sites have much higher activity than the Co sites, with a hydrogen adsorption Gibbs free energy (ΔGH ) close to zero (0.067 eV), which reduces the reaction barrier for hydrogen production. This work provides inspiration for optimizing the intrinsic HER activity of other related transition metal chalcogenides.

18.
Adv Mater ; 33(9): e2007894, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33511705

RESUMO

Layered 2D materials are a vital class of electrocatalys for the hydrogen evolution reaction (HER), due to their large area, excellent activity, and facile fabrication. Theoretical caculations domenstrate, however, that only the edges of the 2D nanosheets act as active sites, while the much larger basal plane exhibits passive activity. Here, from a distinguishing perspective, RhSe2 is reported as a "3D" electrocatalyst for HER with top-class activity, synthesized by a facile solid-state method. Superior to 2D materials, multiple crystal facets of RhSe2 exhibit near-zero free energy change of hydrogen adsorption (ΔGH ), which guarantees high performance in most common morphologies. Density functional theory calculations reveal that the low-coordinated Rh atoms act as the active sites in acid, which enables the modified Kubas-mediated pathway, while the Se atoms act as the active sites in an alkaline medium. The overpotentials of HER activity of RhSe2 are measured to be 49.9 and 81.6 mV at 10 mA cm-2 in acid and alkaline solutions, respectively. This work paves the way to new transition metal chalcogenide catalysts.

19.
Nanotechnology ; 31(48): 485202, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-32931468

RESUMO

Full static x-ray computed tomography (CT) technology has enabled higher precision and resolution imaging and has been applied in many applications such as diagnostic medical imaging, industrial inspection and security screening. In this technique, the x-ray source section is mainly composed of a thermionic cathode and electron beam scanning system. However, they have several shortcomings such as limited scanning angle, long response time and large volume. Distributed and programmable cold cathode (i.e. carbon nanotubes, ZnO nanowires (NWs)) field-emission x-ray sources are expected to solve these problems. However, there have been several long-standing challenges to the application of such cold field emitters for x-ray sources, such as the short lifetime and rigorous fabrication process, which have fundamentally prevented their widespread use. Here, we propose and demonstrate a cold field-emission x-ray source based on a graphene oxide (GO)-coated cuprous sulfide nanowire (Cu2S NW/GO) cathode. The proposed Cu2S NW/GO x-ray source provides stable emission (>18 h at a direct voltage of 2600 V) and has a low threshold (4.5 MV m-1 for obtaining a current density of 1 µA cm-2), benefiting from the demonstrated key features such as in situ epitaxy growth of Cu2S NWs on Cu, nanometer-scale sharp protrusions within GO and charge transfer between the Cu2S NWs and GO layer. Our research provides a simple and robust method to obtain a high-performance cold field emitter, leading to great potential for the next generation of x-ray source and CT.

20.
Angew Chem Int Ed Engl ; 59(50): 22743-22748, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32896011

RESUMO

Vacancy engineering plays vital role in the design of high-performance electrocatalysts. Here, we introduced coupled cation-vacancy pairs in Ni-doped CoSe to achieve boosted hydrogen evolution reaction (HER) activity through a facile topochemical intercalation approach. Adjacent Co vacancy pairs and heteroatom Ni doping contribute together for the upshift of the Se 4pz orbital, which induces larger overlap between the Se 4p and H 1s orbitals. As a result, the free energy of H adsorption can be lowered significantly. With an advanced HER activity of 185.7 mV at 10 mA cm-2 , this work provides new direction and guidance for the design of novel electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...