Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172394, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636850

RESUMO

Microplastics (MPs) and persistent pollutants (POPs) are new pollutants that are extensively studied worldwide. To fill the gaps that the degradation processes and mechanisms of polycyclic aromatic hydrocarbons (PAHs) on the surface of most MPs are still unclear, the photochemical transformation of benzo(a)anthracene (BaA) on polyvinyl chloride (PVC) MPs and polystyrene (PS) MPs in water were investigated and compared. The photolysis of BaA on the surface of PS in water proceeded easier than that on PVC within the 48 h irradiation period, with the pseudo-first-order rate constant of 0.0489 min-1 and 0.0181 min-1, respectively, which can be ascribed to the smaller particle size and more OH production of PS MPs. Due to the light competition between the chromophore and BaA as well as the light-shielding effect, aged MPs showed an inhibitory effect on the degradation of BaA compared with pristine MPs. For BaA/PVC MPs system, the degradation of BaA in real water was not significantly affected by coexisting ions and humic acid (HA) (p < 0.05), while slight inhibitory effect on the degradation of BaA appeared for PS MPs in different water matrices (UP: 86.97 %, YR: 84.47 %, PR: 81.42 % and HR: 83.21 %). According to the electron paramagnetic resonance (EPR) test, quenching experiment and probe experiment, the relative contribution of direct photolysis (PVC: 82.02 %; PS: 69.54 %) and indirect photolysis (PVC: 17.98 %; PS: 30.46 %) was confirmed. A total of 14 products were identified, and the product types were not affected by plastics aging. The results of the toxicity assessment indicated that although some intermediate products remained toxic to aquatic organisms, the toxicity of most products was lower than that of BaA. This study provides new insights into the environmental fate of PAHs and the role of MPs in the photolysis process of contaminants in surface water.

2.
Sci Total Environ ; 924: 171586, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461975

RESUMO

Developing efficient and low-cost photocatalytic materials is essential for removing polychlorinated biphenyls (PCBs). In this work, the photodegradation process of fourteen representative polychlorinated biphenyls (PCBs) in both water/nitrogen-doped SiO2 (N-SiO2) and air/N-SiO2 systems was studied. The photodegradation kinetics of PCBs is consistent with the pseudo-first-order kinetic equation. The variation in the degradation effects of different PCBs in the two systems is primarily related to the position of the Cl substituent and the effective absorption wavelength range of PCBs. A total of fourteen intermediates for 4'-Dichlorobiphenyl (PCB-15), 2,2',4,4',6,6'-Hexachlorobiphenyl (PCB-155), and 2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl (PCB-209) generated from four reaction pathways were identified based on both mass spectrometry analysis and theoretical calculations. Using the values of lnk (k denotes pseudo-first-order kinetic constants) for the 11 PCBs in the training set and the calculated molecular and structural parameters, quantitative structure-activity relationship (QSAR) models for the two systems were constructed by using multiple linear regression (MLR) method to better understand the factors affecting the photodegradation rate of PCBs. The QSAR equations were obtained with Cl atom substitution at position 3 (N3) as the main parameter, which were lnk = -1.98 - 0.19 N3 for the water/N-SiO2 system and lnk = -1.56 - 0.34 N3 for the air/N-SiO2 system, with the correlation coefficient (R2) of 0.66 and 0.73, leave-one-out cross-validation (Q2LOO) of 0.51 and 0.59, respectively, and bootstrapping validation coefficients (Q2BOOT) values of both 0.74, confirming that the models were well fitted and showed high robustness and prediction ability. This study provides valuable insights into photocatalytic degradation studies of PCBs.

3.
Environ Pollut ; 346: 123621, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402942

RESUMO

Considering that waste incineration fly ash is the main carrier of dioxins and can migrate over long distances in the atmosphere, it is of great significance to study the photochemical transformation behavior of dioxins on the surface of fly ash. In this work, 2-chlorodibenzo-p-dioxin (2-CDD) was selected to conduct a systematic photochemical study. The influence of various factors on the photodegradation of 2-CDD were first explored, and the results showed that small particle size of fly ash, low concentration of 2-CDD and appropriate level of humidity were more conducive to photodegradation, with the highest degradation percentage reaching 76%-84%. The components of fly ash (Zn (Ⅱ), Al (Ⅲ), Cu (Ⅱ) and SiO2) also had a certain promoting effect on the degradation of 2-CDD, which increases the degradation efficiency by 10%-20%, because they could act as effective photocatalysts to produce free radicals for reaction. With a higher total light exposure intensity, natural light environments led to a more complete degradation of 2-CDD than laboratory Xe lamp irradiation (90% degradation Vs. 79% degradation). Based on chemical probe and radical quenching experiment, hydroxyl radical also contributed to 2-CDD photodegradation on fly ash. A total of 16 intermediate products were detected by mass spectrometry analysis, and four initial reaction pathways of 2-CDD were speculated in the process, including dechlorination, ether bond cleavage, hydroxyl substitution, and hydroxyl addition. According to the results of density functional theory calculation, the reaction channels of ether bond cleavage and •OH attack were determined. The toxicity assessment software tool (TEST) was used to assess the toxicity and bioconcentration coefficient of reaction products, and it was found that the overall toxicity of the photodegradation products was reduced. This study would provide new insights into the environmental fate of dioxins during long-range atmospheric migration process.


Assuntos
Dioxinas , Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Dioxinas/análise , Cinza de Carvão/análise , Fotólise , Dióxido de Silício , Incineração/métodos , Éteres , Eliminação de Resíduos/métodos , Carbono/química , Metais Pesados/análise
4.
Environ Pollut ; 345: 123541, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342434

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have attracted much attention because of their widespread existence and toxicity. Photodegradation is the main natural decay process of PAHs in soil. The photodegradation kinetics of benzopyrene (BaP) on 16 kinds of soils and 10 kinds of PAHs on Hebei (HE) soil were studied. The results showed that BaP had the highest degradation rate in Shaanxi (SN) soil (kobs = 0.11 min-1), and anthracene (Ant) was almost completely degraded after 16 h of irradiation in HE soil. Two quantitative structure-activity relationship (QSAR) models were established by the multiple linear regression (MLR) method. The developed QSAR models have good stability, robustness and predictability. The model revealed that the main factors affecting the photodegradation of PAHs are soil organic matter (SOM) and the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (Egap). SOM can function as a photosensitizer to induce the production of active species for photodegradation, thus favoring the photodegradation of PAHs. In addition, compounds with lower Egap are less stable and more reactive, and thus are more prone to photodegradation. Finally, the QSAR model was optimized using machine learning approach. The results of this study provide basic information on the photodegradation of PAHs and have important significance for predicting the environmental behavior of PAHs in soil.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Relação Quantitativa Estrutura-Atividade , Fotólise , Poluentes do Solo/análise
5.
Water Res ; 251: 121170, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277831

RESUMO

In this study, we found that alumina (Al2O3) may improve the degradation of phenolic pollutants by KMnO4 oxidation. In KMnO4/Al2O3 system, the removal efficiency of 2,4-Dibromophenol (2,4-DBP) was increased by 26.5%, and the apparent activation energy was decreased from 44.5 kJ/mol to 30.9 kJ/mol. The mechanism of Al2O3-catalytic was elucidated by electrochemical processes, X-ray photoelectron spectroscopy (XPS) characterization and theoretical analysis that the oxidation potential of MnO4- was improved from 0.46 V to 0.49 V. The improvement was attributed to the formation of coordination bonds between the O atoms in MnO4- and the empty P orbitals of the Al atoms in Al2O3 crystal leading to the even-more electron deficient state of MnO4-. The excellent reusability of Al2O3, the good performance on degradation of 2,4-DBP in real water, the satisfactory degradation of fixed-bed reactor, and the enhanced removal of 6 other phenolic pollutants demonstrated that the KMnO4/Al2O3 system has satisfactory potential industrial application value. This study offers evidence for the improvement of highly-efficient MnO4- oxidation systems.


Assuntos
Óxido de Alumínio , Poluentes Químicos da Água , Óxido de Alumínio/química , Óxidos/química , Oxirredução , Compostos de Manganês/química , Fenóis , Catálise , Poluentes Químicos da Água/química
6.
Toxics ; 12(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38251010

RESUMO

Butylated hydroxyanisole (BHA), a synthetic phenolic antioxidant (SPA), is now widely present in natural waters. To improve the degradation efficiency of BHA and reduce product toxicity, a combination of peroxymonosulfate (PMS) and Ferrate(VI) (Fe(VI)) was used in this study. We systematically investigated the reaction kinetics, mechanism and product toxicity in the degradation of BHA through the combined use of PMS and Fe(VI). The results showed that PMS and Fe(VI) have synergistic effects on the degradation of BHA. The effects of operational factors, including PMS dosage, pH and coexisting ions (Cl-, SO42-, HCO3-, K+, NH4+ and Mg2+), and different water matrices were investigated through a series of kinetic experiments. When T = 25 °C, the initial pH was 8.0, the initial BHA concentration was 100 µM, the initial concentration ratio of [PMS]0:[Fe(VI)]0:[BHA]0 was 100:1:1 and the degradation rate could reach 92.4% within 30 min. Through liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) identification, it was determined that the oxidation pathway of BHA caused by PMS/Fe(VI) mainly includes hydroxylation, ring-opening and coupling reactions. Density functional theory (DFT) calculations indicated that •OH was most likely to attack BHA and generate hydroxylated products. The comprehensive comparison of product toxicity results showed that the PMS/Fe(VI) system can effectively reduce the environmental risk of a reaction. This study contributes to the development of PMS/Fe(VI) for water treatment applications.

7.
Sci Total Environ ; 912: 168860, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040358

RESUMO

In this work, the oxidation performance of a new ferrate(VI)/ferrihydrite (Fe(VI)/Fh) system was systematically explored to degrade efficiently six kinds of benzophenone-type UV filters (BPs). Fe(VI)/Fh system not only had a superior degradation capacity towards different BPs, but also exhibited higher reactivity over a pH range of 6.0-9.0. The second-order kinetic model successfully described the process of BP-4 degradation by heterogeneous Fh catalyzed Fe(VI) system (R2 = 0.93), and the presence of Fh could increase the BP-4 degradation rate by Fe(VI) by an order of magnitude (198 M-1·s-1 v.s. 14.2 M-1·s-1). Remarkably, there are higher utilization efficiency and potential of Fe(VI) in Fe(VI)/Fh system than in Fe(VI) alone system. Moreover, characterization and recycling experiments demonstrated that Fh achieved certain long-term running performance, and the residual Fe content of solution after clarifying process meet World Health Organization (WHO) guidelines for drinking water. The contributions of reactive species could be ranked as Fe(V)/Fe(IV) > Fe(VI) > â€¢OH. Fe(IV)/Fe(V) were the dominant species for the enhanced removal in the Fe(VI)/Fh system, whose percentage contribution (72 %-36 %) were much higher than those in Fe(VI) alone system (5 %-17 %). However, the contribution of Fe(VI) in oxidizing BP-4 should not be underestimated (20 %-56 %). These findings reasonably exploit available Fh resources to reduce the relatively high cost of Fe(VI), which offers a proper strategies for efficient utilization of high-valent iron species and may be used as a highly-efficient and cost-effective BPs purification method.

8.
Chemosphere ; 349: 140952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101481

RESUMO

The degradation process of bisphenol S (BPS) in ozone/peroxymonosulfate (O3/PMS) system was systematically explored. The results showed that the removal efficiency of BPS by O3 could be significantly improved with addition of PMS. Compared with ozonation alone, the pseudo-first-order constant (kobs) was increased by 2-5 times after adding 400 µM PMS. In O3/PMS system, accelerated removal of BPS was observed under neutral and alkaline conditions. The removal efficiency of BPS reached 100% after 40 s of reaction at pH 7.0, with the kobs of 0.098 s-1. Moreover, Cu2+ had a catalytic effect on the O3/PMS system, because it could catalyze the decomposition of ozone and PMS to produce •OH and SO4•-, respectively. Electron paramagnetic resonance illustrated that •OH and SO4•- were the reactive species in O3/PMS system. Twelve intermediates were identified by mass spectrometry, and the degradation reactions in O3/PMS system mainly included hydroxylation, sulfate addition, polymerization and ß-scission. Finally, the toxicity of the products was evaluated by the EOCSAR program. Our results introduce an efficient method for BPS removal and would provide some guidance for the development of O3-based advanced oxidation technology.


Assuntos
Ozônio , Poluentes Químicos da Água , Ozônio/química , Poluentes Químicos da Água/análise , Peróxidos/química , Oxirredução
9.
J Hazard Mater ; 465: 133398, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38160556

RESUMO

In this work, nitrogen-doped SiO2 (N-SiO2) was successfully synthesized to develop an "adsorption-photocatalytic degradation" water purification technology to remove hydrophobic organic contaminants (HOCs). As a representative of HOCs, decabromodiphenylethane (DBDPE) could be efficiently degraded under simulated sunlight after adsorption on the surface of N-SiO2. Due to the generation of reactive oxygen species (ROS) and silicon-based radicals, the photodegradation rate of DBDPE on water-SiO2 interface was 1.5-fold higher than that in water. Furthermore, the transformation pathways of DBDPE on N-SiO2 surface were compared with that in water. Bond breaking and debromination reactions were the common pathways, while hydroxylation and silicon-based substitution reactions were the specific transformation pathways for DBDPE on the surface of N-SiO2. Density functional theory (DFT) calculation was used to reveal the generation mechanism of silicon-based radicals and determine the rationality of the involvement of silicon-based radicals in DBDPE transformation. The energy barriers of silicon-based substitution reaction were comparable to that of hydroxylation and debromination reactions, which confirmed the plausibility of the generation of silicon-based substitution products. This study provides an efficient method for the disposal of HOCs, which also gives some new insights into the conversion mechanism of organic pollutants mediated by silicon-based radicals.

10.
Environ Sci Technol ; 57(41): 15715-15724, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37807513

RESUMO

Bisphenol B (BPB, 2,2-bis(4-hydroxyphenyl) butane), as a substitute for bisphenol A, has been widely detected in the environment and become a potential threat to environmental health. This work found that silver oxide nanoparticles (Ag2O) could greatly promote the removal of BPB by ferrate (Fe(VI)). With the presence of 463 mg/L Ag2O, the amount of Fe(VI) required for the complete removal of 10 µM BPB will be reduced by 70%. Meanwhile, the recyclability and stability of Ag2O have been verified by recycling experiments. The characterization results and in situ electrochemical analyses showed that Ag(II) was produced from Ag(I) in the Fe(VI)-Ag2O system, which has a higher electrode potential to oxidize BPB to enhance its removal. A total of 13 intermediates were identified by high-resolution mass spectrometry, and three main reaction pathways were proposed, including oxygen transfer, bond breaking, and polymerization. Based on the toxicity assessment through the ECOSAR program, it is considered that the presence of Ag2O reduced the toxicity of BPB oxidation intermediates to aquatic organisms. These results would deepen our understanding of the interaction between Fe(VI) and Ag2O, which may provide an efficient and environmentally friendly method for water and wastewater treatment.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Ferro/química , Oxirredução , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
11.
Water Res ; 245: 120560, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688852

RESUMO

This work was to investigate the transformation of coexisting decabromodiphenyl ether (BDE-209) on microplastics and their possible interactions in UV/chlorine process. Compared with pristine microplastics, the highly aged polystyrene (PS) showed an inhibitory effect on degradation of BDE-209. Increasing initial concentration of BDE-209 on PS inhibited degradation, while the chlorine concentration and pH did not affect the final degradation efficiency. Moreover, the presence of NO3-, SO42-, HCO3- and HA in water was unfavorable for BDE-209 degradation. According to the experimental and calculation results, the contribution to the degradation of BDE-209 was ranked as direct photolysis > HO• > •Cl in the UV/ chlorine system. Chlorination products released by PS during UV/chlorination were detected. Four possible reaction pathways of BDE-209 were proposed, which mainly involved debromination, hydroxylation, chlorine substitution, cleavage of ether bond, and intramolecular elimination of HBr. It was worth noting that PS microplastics not only inhibited the degradation of BDE-209, but also affected the type and abundance of its transformation products. Meanwhile, interaction products of PS and BDE-209 were determined, which was attributed to reactions of PS-derived radicals with •Br/•C6Br5 and •Cl. Results of toxicity evaluation showed that the introduction of carbon-halogen bonds, especially C-Br bond, increased the toxicity of chain scission products of PS. This work provides some new insights into transformation, interaction, and associated ecological risks of coexisting microplastics and surface adsorbed contaminants in the UV/chlorine process of drinking water treatment plants (DWTPs) and wastewater treatment plants (WWTPs).

12.
J Hazard Mater ; 458: 131983, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406528

RESUMO

In this study, the catalytic performance of α-Fe2O3 nanoparticles (nα-Fe2O3) in the low-dose ferrate (Fe(VI)) system was systematically studied through the degradation of pentachlorophenol (PCP). Based on the established quadratic functions between nα-Fe2O3 amount and observed pseudo first-order rate constant (kobs), two linear correlation equations were offered to predict the optimum catalyst dosage and the maximum kobs at an applied Fe(VI) amount. Moreover, characterization and cycling experiments showed that nα-Fe2O3 has good stability and recyclability. According to the results of reactive species identification and quenching experiment and galvanic oxidation process, the catalytic mechanism was proposed that Fe(III) on the surface of nα-Fe2O3 may react with Fe(VI) to enhance the generation of highly reactive Fe(IV)/Fe(V) species, which rapidly extracted a single electron from PCP molecule for its further reaction. Besides, two possible PCP degradation pathways, i.e., single oxygen transfer mediated hydroxylation and single electron transfer initiated polymerization were proposed. The formation of coupling products that are prone to precipition and separation was largely improved. This study proved that nα-Fe2O3 can effectively catalyze PCP removal at low-dose Fe(VI), which provides some support for the application of Fe(VI) oxidation technology in water treatment in the context of low-carbon emissions.

13.
Chemosphere ; 336: 139189, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37307926

RESUMO

In this study, the oxidation of 1-naphthol (1-NAP) and 2-naphthol (2-NAP) by Fe(VI) was investigated. The impacts of operating factors were investigated through a series of kinetic experiments, including Fe(VI) dosages, pH and coexisting ions (Ca2+, Mg2+, Cu2+, Fe3+, Cl-, SO42-, NO3- and CO32-). Almost 100% elimination of both 1-NAP and 2-NAP could be achieved within 300 s at pH 9.0 and 25 °C. Cu2+ could significantly improve the degradation efficiency of 1-NAP and 2-NAP, but the impacts of other ions were negligible. The liquid chromatography-mass spectrometry was used to identify the transformation products of 1-NAP and 2-NAP in Fe(VI) system, and the degradation pathways were proposed accordingly. Electron transfer mediated polymerization reaction was the dominant transformation pathway in the elimination of NAP by Fe(VI) oxidation. After 300 s of oxidation, heptamers and hexamers were found as the final coupling products during the removal of 1-NAP and 2-NAP, respectively. Theoretical calculations demonstrated that the hydrogen abstraction and electron transfer reaction would easily occur at the hydroxyl groups of 1-NAP and 2-NAP, producing NAP phenoxy radicals for subsequent coupling reaction. Moreover, since the electron transfer reactions between Fe(VI) and NAP molecules were barrierless and could occur spontaneously, the theoretical calculation results also confirmed the priority of coupling reaction in Fe(VI) system. This work indicated that the Fe(VI) oxidation was an effective way for removing naphthol, which may help us understand the reaction mechanism between phenolic compounds with Fe(VI).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Naftóis , Cinética , Oxirredução , Poluentes Químicos da Água/química , Purificação da Água/métodos
14.
J Hazard Mater ; 452: 131252, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963191

RESUMO

To reveal the fate of anthracene (ANT) in soil, the photodegradation behavior of ANT was systematically studied using SiO2 to simulate a soil environment. Under xenon lamp irradiation, more than 90% of ANT loaded on SiO2 could be removed after 240 min. Moreover, the effects of water content, chloride ions (Cl-) and humic acid (HA) were examined. It was found that the presence of water and HA can significantly inhibit the photolysis of ANT on SiO2, while the addition of chloride alone has no obvious effect. However, when water is present, the inhibition effect of chloride became more obvious. According to radical quenching experiments and electron paramagnetic resonance (EPR) spectra, hydroxyl radicals (•OH) and chlorine radicals (Cl•) were formed in the system. Possible reaction pathways were speculated based on products identified by mass spectrometry. ANT was attacked by •OH to form hydroxylated products, which can be further hydroxylated and oxidized with the final formation of ring-opening products. ANT directly excited by light may also react with Cl• to produce chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs). Finally, the experimental results were verified on real soil. This study provides important information for understanding the photochemical transformation mechanism of ANT at the soil/air interface.

15.
Environ Sci Technol ; 57(29): 10629-10639, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-36241607

RESUMO

In this work, the oxidation of five phenolic contaminants by ferrate(VI) was comparatively investigated to explore the possible reaction mechanisms by combined experimental results and theoretical calculations. The second-order rate constants were positively correlated with the energy of the highest occupied molecular orbital. Considering electronic effects of different substituents, the easy oxidation of phenols by ferrate(VI) could be ranked as the electron-donating group (-R) > weak electron-withdrawing group (-X) > strong electron-withdrawing group (-(C═O)-). The contributions of reactive species (Fe(VI), Fe(V)/(IV), and •OH) were determined, and Fe(VI) was found to dominate the reaction process. Four main reaction mechanisms including single-oxygen transfer (SOT), double-oxygen transfer (DOT), •OH attack, and electron-transfer-mediated coupling reaction were proposed for the ferrate(VI) oxidation process. According to density functional theory calculation results, the presence of -(C═O)- was more conducive for the occurrence of DOT and •OH attack reactions than -R and -X, while the tendency of SOT for different substituents was -R > -(C═O)- > -X and that of e--transfer reaction was -R > -X > -(C═O)-. Moreover, the DOT pathway was found in the oxidation of all four substituted phenols, indicating that it may be a common reaction mechanism during the ferrate(VI) oxidation of phenolic compounds.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Cinética , Teoria da Densidade Funcional , Oxirredução , Fenóis , Oxigênio , Purificação da Água/métodos
16.
J Hazard Mater ; 445: 130475, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455331

RESUMO

The transformation process of contaminants on microplastics (MPs) exposed to sunlight has attracted increasing attention. However, the interactions between them are typically disregarded; therefore, this work investigated the photodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on three MPs (polystyrene (PS), polypropylene (PP) and polyethylene (PE)) and the interactions between these two. The inhibition of aged PS on the elimination of BDE-47 was due to light shielding, while aged PP and PE increased the degradation rate. More hydroxyl radicals (HO•) was detected in the PS system, which resulted in the higher degradation rate of BDE-47 on PS. A total of 33 different products were identified and four reaction pathways were presented, and the reaction mechanisms mainly included debromination, hydroxylation, carbon-oxygen-bond breaking and interactive reactions. The Ecological Structure Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (TEST) programs were used to evaluate the toxicity of reaction products, and the results indicated that even though BDE-47 was the most toxic, the interaction products were still toxic or harmful to aquatic organisms. This study provides significant information on the photodegradation of contaminants on common microplastics and their interaction, which cannot be ignored.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/toxicidade , Éter , Fotólise , Poliestirenos/toxicidade , Polipropilenos , Polietileno , Poluentes Químicos da Água/toxicidade
17.
Water Res ; 226: 119316, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369691

RESUMO

As a class of emerging aquatic pollutants, alkylimidazole-based ionic liquids (AM-ILs) have received extensive attention due to the large acute toxicity to aquatic organisms. Therefore, in order to protect both aquatic organisms and human beings, it is necessary to seek an efficient and environmental-friendly technology for removal of AM-ILs from water bodies. In this work, we found that under simulated sunlight (Xe lamp) irradiation, periodate (KIO4, PI) could efficiently degrade 1-hexyl-2,3-dimethylimidazolium bromide ([HMMIm]Br), a representative AM-ILs with six carbon atoms in the side chain. Kinetics experiments on the degradation of [HMMIm]Br were performed, and the results showed that a high degradation efficiency (≥90.00%) of the cation ([HMMIm]+) was still maintained under harsh water conditions of strong acidity/alkaliny or with various non-target inorganic ions. More importantly, the anion of bromide ion (Br-) was not oxidized to the carcinogenic bromate (BrO3-) in current reaction system. The excited stated PI (marked as PI*) was detected by Laser flash photolysis, and it was an important reactive species for [HMMIm]+ degradation. As rationalized by theoretical calculations and scavenging experiments, the main oxidation mechanisms of [HMMIm]+ were hydroxyl radicals induced substitution reaction, PI* initiated electron and double oxygen transfer, and direct photolysis mediated chemical bond cleavage reaction, which contributed to 73%, 21%, and 6% of [HMMIm]+ degradation, respectively. Moreover, toxicity evaluation by ECOSAR software indicated that the oxidation products were generally less toxic to three aquatic organisms (fish, water flea, and green algae) than the target molecule [HMMIm]Br. In conclusion, this work proposed novel oxidation mechanisms of sunlight-activated PI system, and the findings may inspire further researches on the application of photoactivated hypervalent acids in water purification.


Assuntos
Líquidos Iônicos , Poluentes Químicos da Água , Animais , Humanos , Líquidos Iônicos/química , Luz Solar , Brometos , Poluentes Químicos da Água/química , Fotólise , Cinética , Imidazóis/química
18.
Water Res ; 222: 118953, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964513

RESUMO

This work systematically examined the capability of ferrate (Fe(VI)) for ammonia oxidation, revealing for the first time that bromide ions (Br-) played an important role in promoting the removal of ammonia in Fe(VI) system. In the presence of 10.0 mM Br-, the removal efficiency of ammonia was nearly 3.4 times that of the control, and 1.0 mM ammonia was almost completely removed after two rounds addition of 1.0 mM Fe(VI) in 60 min. PMSO probe test, electron paramagnetic resonance spectra and radical quenching experiments were employed to interpret the underlying promotion mechanism of Br-, and it was proposed that the formation of active bromine (HOBr/OBr-) played a dominant role in the enhanced oxidative removal of ammonia by Fe(VI). Further kinetic model simulations revealed that HOBr/OBr- and Fe(VI) were the two major reactive species in Fe(VI)/Br- system, accounting for 66.7% and 33.0% of ammonia removal, respectively. As the target contaminant, ammonia could quickly consume the generated HOBr/OBr-, thereby suppressing the formation of brominated disinfection byproducts. Finally, NO3- was identified as the dominant transformation product of ammonia, and density functional theory (DFT) calculations revealed that six reaction stages were involved in ammonia oxidation with the first step as the rate-limiting step. This work would enable the full use of coexisting bromides for effective removal of ammonia from natural waters or wastewaters by in situ Fe(VI) oxidation method.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Amônia , Brometos , Bromo , Cinética , Oxirredução , Poluentes Químicos da Água/análise
19.
J Hazard Mater ; 436: 129091, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35569375

RESUMO

The effect of electrochemical degradation on Magnéli phase Ti4O7 anode combined with UV irradiation on the removal of PFOS was systematically evaluated in the present study. A synergistic effect of electrolysis and UV irradiation rather than a simple additive effect for PFOS degradation was demonstrated experimentally and theoretically. The short wavelength irradiation within 400 nm is the main contribution to enhance the electrochemical degradation of PFOS, while the initial pH of the solution has little effect on the PFOS degradation. The increase of current density accelerates the removal of PFOS either by electrolysis treatment or the joint process. The time-dependent density functional theory (TD-DFT) calculation indicates that the synergistic effect of the electrolysis and UV irradiation is most likely due to the involvement of the excited PFOS induced under UV irradiation in the electrochemical reaction. This study provides the first mechanistic explanation for the electrochemical degradation of PFOS enhanced by UV irradiation.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Água , Poluentes Químicos da Água/análise
20.
Chemosphere ; 299: 134397, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35337821

RESUMO

The widespread use of polybrominated diphenyl ethers (PBDEs) inevitably leads to their occurrence in the atmosphere, soil, and sediment. Biomass, especially dry branches and fallen leaves, may act a large reservoir for PBDEs through atmospheric deposition or soil bioaccumulation. Thus, clarifying the sunlight-induced transformation behaviors of PBDEs on biomass is highly significant for our understanding on its natural self-purification process. In this work, the degradation kinetics and mechanisms of two common PBDEs congeners, decabromodiphenyl ether (BDE-209) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), on biomass were systematically studied under natural and simulated sunlight irradiation conditions. The highest photodegradation rate constant of BDE-209 and BDE-47 was observed on sour cherry (SC) and zoysia matrella (ZM), respectively, which was related to their larger light receiving area and poor crystallinity. Due to the higher apparent quantum efficiency, BDE-209 degrades faster than BDE-47 (0.063-0.223 vs 0.006-0.026 h-1). The sunlight self-purification cycle of BDE-209 and BDE-47 on biomass were 6 and 14 days, respectively, with the corresponding sunlight contribution in the range of 0.12-0.51 ng mW-1. Products analysis by GC-MS and HPLC-MS/MS revealed that the main reactions involved in the photodegradation of BDE-209 and BDE-47 on biomass were debromination, hydroxylation, cyclization, and C-O bond breaking reaction. Especially, it was firstly proposed that hydroxyl H in lignin from biomass participated in the formation of primary products, which were rationalized by density functional theory (DFT) calculations and control experiments.


Assuntos
Éteres Difenil Halogenados , Bifenil Polibromatos , Biomassa , Éteres Difenil Halogenados/análise , Fotólise , Bifenil Polibromatos/química , Solo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...