Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 894
Filtrar
1.
Open Life Sci ; 19(1): 20220898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947769

RESUMO

Castleman disease (CD) is a relatively rare lymphoproliferative disorder. Lesions predominantly originate on the chest and neck and rarely occur on the abdomen. A 34-year-old female presented to our hospital with an unexplained 10-year history of anemia. A pathological diagnosis of plasma cell-type CD was established. One cycle of chemotherapy (thalidomide, cyclophosphamide, and prednisolone) improved her anemia significantly. Prompt etiological diagnosis and early intervention are essential to address systemic manifestations in patients with CD, and it is crucial to consider CD as a differential diagnosis when intra-abdominal masses are detected.

2.
Sci Rep ; 14(1): 15331, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961200

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising therapeutic target to reduce lipids. In 2020, we reported a chimeric camelid-human heavy chain antibody VHH-B11-Fc targeting PCSK9. Recently, it was verified that VHH-B11 binds one linear epitope in the PCSK9 hinge region. To enhance its druggability, we have developed a novel biparatopic B11-H2-Fc Ab herein. Thereinto, surface plasmon resonance (SPR) confirmed the epitope differences in binding-PCSK9 among VHH-B11, VHH-H2 and the approved Repatha. Additionally, SPR revealed the B11-H2-Fc exhibits an avidity of approximately 0.036 nM for PCSK9, representing a considerable increase compared to VHH-B11-Fc (~ 0.69 nM). Moreover, we found the Repatha and B11-H2-Fc exhibited > 95% PCSK9 inhibition efficiency compared to approximately 48% for the VHH-Fc at 7.4 nM (P < 0.0005). Further, we verified its biological activity using the human hepatoma cells G2 model, where the B11-H2-Fc exhibited almost 100% efficiency in PCSK9 inhibition at only 0.75 µM. The immunoblotting results of low-density lipoprotein cholesterol (LDL-c) uptake assay also demonstrated the excellent performance of B11-H2-Fc on recovering the LDL-c receptor (LDLR), as strong as the Repatha (P > 0.05). These findings provide the first evidence of the efficacy of a novel Ab targeting PCSK9 in the field of lipid-lowering drugs.


Assuntos
Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/imunologia , Células Hep G2 , Inibidores de PCSK9 , Ressonância de Plasmônio de Superfície , Receptores de LDL/metabolismo , Epitopos/imunologia , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/imunologia
3.
Heliyon ; 10(11): e32583, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961892

RESUMO

In the evolving landscape of higher education, particularly in the post-pandemic era, it is crucial for college students to face societal challenges and achieve success by understanding and predicting psychological resilience. To deepen our understanding of psychological resilience, this study used a decision tree model to explore influencing factors. We surveyed 776 college students and collected data on demographic information, self-esteem, sense of school belonging, pro-environmental behavior, subjective well-being, internet game addiction, life autonomy, and academic procrastination using several scales. The decision tree model identified eight key predictors of psychological resilience, which are as follows in order of importance: self-esteem, sense of school belonging, pro-environmental behavior, subjective well-being, academic procrastination, life autonomy, internet game addiction, and academic achievement. This model's accuracy reached 73.985 %, emphasizing its potential utility in educational settings. The findings not only provide a novel and data-driven perspective to understand psychological resilience in college students compared to existing research but also provide practical guidance for educational practitioners and policymakers on how to develop psychological resilience in college students.

4.
Anal Chim Acta ; 1315: 342825, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879210

RESUMO

BACKGROUND: Non-invasive indirect blood glucose monitoring can be realized by detecting low concentrations of glucose (0.05-5 mM) in tears, but sensitive optical indicators are required. The intensity of the phosphorescence of a candidate optical indicator, palladium hematoporphyrin monomethyl ether (Pd-HMME), is increased by oxygen consumption under sealed conditions in the presence of glucose and glucose oxidase. However, the glucose detection limit based on this mechanism is high (800 µM) because the phosphorescence is completely quenched under ambient oxygen conditions and hence a large amount of glucose is required to reduce the oxygen levels such that the phosphorescence signal is detectable. RESULTS: To improve the glucose detection limit of Pd-HMME phosphorescence-based methods, the triplet protector imidazole was introduced, and strong phosphorescence was observed under ambient oxygen conditions. Detectable phosphorescence enhancement occurred at low glucose concentrations (<200 µM). Linear correlation between the phosphorescence intensity and glucose concentration was observed in the range of 30-727 µM (R2 = 99.9 %), and the detection limit was ∼10 µM. The glucose sensor has a fast response time (∼90 s) and excellent selectivity for glucose. SIGNIFICANCE AND NOVELTY: These results indicate the potential of the developed optical indicator for fast, selective, and reliable low-concentration glucose sensing.


Assuntos
Limite de Detecção , Medições Luminescentes , Medições Luminescentes/métodos , Hematoporfirinas/química , Hematoporfirinas/análise , Paládio/química , Glucose/análise , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Glicemia/análise , Imidazóis/química , Técnicas Biossensoriais/métodos , Oxigênio/química , Humanos
5.
J Phys Chem A ; 128(25): 5065-5076, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38870409

RESUMO

Efficient and accurate reactive force fields (e.g., ReaxFF) are pivotal for large-scale atomistic simulations to comprehend microscopic combustion processes. ReaxFF has been extensively utilized to describe chemical reactions in condensed phases, but most existing ReaxFF models rely on quantum mechanical (QM) data nearly two decades old, particularly in hydrocarbon systems, constraining their accuracy and applicability. Addressing this gap, we introduce a reparametrized ReaxFFCHO-S22 for C/H/O systems, tailored for studying the pyrolysis and combustion of hydrocarbon fuel. Our approach involves high-level QM benchmarks and large database construction for C/H/O systems, global ReaxFF parameter optimization, and molecular dynamics simulations of typical hydrocarbon fuels. Density functional theory (DFT) computations utilized the M06-2X functional at the meta-generalized gradient approximation (meta-GGA) level with a large basis set (6-311++G**). Our new ReaxFFCHO-S22 model exhibits a minimum 10% enhancement in accuracy compared to the previous ReaxFF models for a large variety of hydrocarbon molecules. This advanced ReaxFFCHO-S22 not only enables efficient large-scale studies on the microscopic chemical reactions of more complex hydrocarbon fuel but also can extend to biofuels, energetic materials, polymers, and other pertinent systems, thus serving as a valuable tool for studying chemical reaction dynamics of the large-scale hydrocarbon condensed phase at an atomistic level.

6.
Chemistry ; : e202401376, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887819

RESUMO

Mechanochemical reactions, achieved through milling, grinding, or other mechanical actions, have emerged as a solvent-free alternative to traditional solution-based chemistry. Mechanochemistry not only provides the opportunity to eliminate bulk solvent use, reducing waste generation, but also unveils a new reaction strategy which enables the realization of reactions previously inaccessible in solution. While the majority of organic reactions facilitated by mechanical force traditionally follow two-electron transfer pathways similar to their solution-based counterparts, the field of mechanochemically induced single-electron transfer (SET) reactions has witnessed rapid development. This review outlines examples of mechanochemical reactions facilitated by the SET process, focusing on the reagents that initiate SET, thereby positioning mechanochemistry as a burgeoning field within the realm of single-electron chemistry.

7.
Cancer Lett ; 597: 217072, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885807

RESUMO

CD39 is a pivotal enzyme in cancer, regulating immune response and tumor progression via extracellular ATP and adenosine in the tumor microenvironment (TME). Beyond its established immunoregulatory function, CD39 influences cancer cell angiogenesis and metabolism, opening new frontiers for therapeutic interventions. Current research faces gaps in understanding CD39's full impact across cancer types, with ongoing debates about its potential beyond modulating immune evasion. This review distills CD39's multifaceted roles, examining its dual actions and implications for cancer prognosis and treatment. We analyze the latest therapeutic strategies, highlighting the need for an integrated approach that combines molecular insights with TME dynamics to innovate cancer care. This synthesis underscores CD39's integral role, charting a course for precision oncology that seeks to unravel controversies and harness CD39's therapeutic promise for improved cancer outcomes.

8.
Biomater Adv ; 162: 213917, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38861802

RESUMO

Acute myocardial infarction (AMI) resulting from coronary artery occlusion stands as the predominant cause of cardiovascular disability and mortality worldwide. An all-encompassing treatment strategy targeting pathological processes of oxidative stress, inflammation, proliferation and fibrotic remodeling post-AMI is anticipated to enhance therapeutic outcomes. Herein, an up-down-structured bilayer microneedle (Ce-CLMs-BMN) with reactive oxygen species (ROS) and ultrasound (US) dual-responsiveness is proposed for AMI in-situ sequential therapy. The upper-layer microneedle is formulated by crosslinking ROS-sensitive linker with polyvinyl alcohol loaded with cerium dioxide nanoparticles (CeNPs) featuring versatile enzyme-mimetic activities. During AMI acute phase, prompted by ischemia-induced microenvironmental redox imbalance, this layer swiftly releases CeNPs, which aid in eliminating excessive ROS and catalyzing oxygen gas (O2) production through multiple enzymatic pathways, thereby alleviating oxidative stress-induced damage and modulating inflammation. In AMI chronic repair phase, micro-nano reactors (CLMs) situated in the lower-layer microneedle undergo cascade reactions with the assistance of US irradiation to generate nitric oxide (NO). As a bioactive molecule with pro-angiogenic and anti-fibrotic effects, NO expedites cardiac repair while attenuating adverse remodeling. Additionally, its antiplatelet-aggregating properties contribute to thromboprophylaxis. In-vitro and in-vivo results substantiate the efficacy of this integrated healing approach in AMI management, showcasing promising prospects for advancing infarcted heart repair.


Assuntos
Infarto do Miocárdio , Agulhas , Espécies Reativas de Oxigênio , Infarto do Miocárdio/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Nanopartículas/uso terapêutico , Cério/administração & dosagem , Cério/química , Cério/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Óxido Nítrico/administração & dosagem , Óxido Nítrico/metabolismo , Ratos , Masculino , Álcool de Polivinil/química , Álcool de Polivinil/administração & dosagem
9.
NeuroRehabilitation ; 54(4): 575-597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38943405

RESUMO

BACKGROUND: Wearable trunk exoskeletons hold immense potential in fields such as healthcare and industry. Previous research has indicated that intention recognition control plays a crucial role in users' daily use of exoskeletons. OBJECTIVE: This review aims to discuss the characteristics of intention recognition control schemes for intelligent trunk exoskeletons under different control objectives over the past decade. METHODS: Considering the relatively late development of active trunk exoskeletons, we selected papers published in the last decade (2013 to 2023) from the Web of Science, PubMed, and IEEE Xplore databases. In total, 50 articles were selected and examined based on four control objectives. RESULTS: In general, we found that researchers focus on trunk exoskeleton devices designed for assistance and motor augmentation, which rely more on body movement signals as a source for intention recognition. CONCLUSION: Based on these results, we identify and discuss several promising research directions that may help to attain a widely accepted control methods, thereby advancing further development of trunk exoskeleton technology.


Assuntos
Exoesqueleto Energizado , Intenção , Tronco , Humanos , Tronco/fisiologia , Movimento/fisiologia , Dispositivos Eletrônicos Vestíveis
10.
ACS Nano ; 18(24): 15557-15575, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38837909

RESUMO

Tumor vaccines have demonstrated a modest response rate, primarily attributed to their inefficient delivery to dendritic cells (DCs), low cross-presentation, DC-intrinsic immunosuppressive signals, and an immunosuppressive tumor microenvironment (TME). Here, draining lymph node (DLN)-targeted and tumor-targeted nanovaccines were proposed to address these limitations, and heterocyclic lipidoid (A18) and polyester (BR647) were synthesized to achieve dual-targeted cancer immunotherapy. Meanwhile, oligo hyaluronic acid (HA) and DMG-PEG2000-Mannose were incorporated to prepare dual-targeted nanovaccines encapsulated with STAT3 siRNA and model antigens. The nanovaccines were designed to target the DLN and the tumor, facilitating the delivery of cargo into the cytoplasm. These dual-targeted nanovaccines improved antigen presentation and DC maturation, activated the stimulator of interferon genes (STING) pathway, enhanced the pro-apoptotic effect, and stimulated antitumor immune responses. Additionally, these dual-targeted nanovaccines overcame immunosuppressive TME, reduced immunosuppressive cells, and promoted the polarization of tumor-associated neutrophils from N2 to N1. Among the four dual-targeted nanovaccines that induced robust antitumor responses, the heterocyclic lipidoid@polyester hybrid nanovaccines (MALO@HBNS) demonstrated the most promising results. Furthermore, a combination strategy involving MALO@HBNS and an anti-PD-L1 antibody exhibited an immensely powerful anticancer role. This work introduced a dual-targeted nanovaccine platform for antitumor treatment, suggesting its potential combination with an immune checkpoint blockade as a comprehensive anticancer strategy.


Assuntos
Vacinas Anticâncer , Imunoterapia , Nanopartículas , Poliésteres , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Animais , Camundongos , Poliésteres/química , Nanopartículas/química , Camundongos Endogâmicos C57BL , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Lipídeos/química , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Linhagem Celular Tumoral , RNA Interferente Pequeno/química , Ácido Hialurônico/química , Nanovacinas
11.
Imeta ; 3(3): e197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898992

RESUMO

Engineering bacteria are considered as a potential treatment for cardiovascular diseases and related risk factors. Oral bacteria are closely related to the occurrence and development of cardiovascular diseases, and their engineering has broad prospects and potential in the treatment of cardiovascular diseases. Oral pathogenic bacteria undergo protein and genetic engineering, including the incorporation of exogenous plasmids to yield therapeutic effects; genetically engineered oral probiotics can be harnessed to secrete cytokines and reactive oxygen species, offering novel therapeutic avenues for cardiovascular diseases.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38914918

RESUMO

BACKGROUND: The tumor microenvironment (TME) plays a crucial role in various aspects of breast cancer development and metastasis. Nevertheless, the expression, prognostic significance, and correlation with clinical features of SCARB2 in breast cancer, as well as the infiltrative characteristics of TME, remain largely unknown. METHODS: We analyzed the differential presentation of SCARB2 mRNA in breast cancer tissues and nontumorous breast tissues and prognosis by The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Additionally, the Tumor Immunity Estimation Resource (TIMER) was taken to evaluate the correlation between SCARB2 mRNA presence and tumor-infiltrating immune cells and immune checkpoints in the TME in breast cancer. We performed multiple immunohistochemical staining to verify the SCARB2 protein expression in breast cancer tissues and its relationship to immune cells and checkpoints and clinicopathological features. RESULTS: We identified elevated SCARB2 expression in breast cancer tissues, and high SCARB2 protein presentation was associated with advanced clinical stage and unfavorable prognosis. In addition, enhanced SCARB2 protein presence was closely correlated with up-regulation CD66b+ neutrophils infiltration in tumor tissues (r = 0.210, P < 0.05) and CD68 + CD163+ M2 macrophages in the interstitium (r = 0.233, P < 0.05), as well as the immune checkpoints, including PD-1 (r = 0.314, P < 0.01) protein expression. CONCLUSION: SCARB2 holds promise for predicting the clinical outcome of breast cancer patients and could serve as a potential therapeutic target.

13.
Front Nutr ; 11: 1416753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826578

RESUMO

Pea protein is one of plant proteins with high nutritional value, but its lower solubility and poor emulsifying properties limit its application in food industry. Based on wet-heating glycosylation of pea protein and inulin, effects of discharge power of atmospheric pressure plasma jet (APPJ) on structure, solubility, and emulsifying ability of pea protein-inulin glycosylation conjugate were explored. Results indicated that the APPJ discharge power did not affect the primary structure of pea protein. However, changes in secondary and spatial structure of pea protein were observed. When APPJ discharge power was 600 W, the solubility of glycosylation conjugate was 75.0% and the emulsifying stability index was 98.9 min, which increased by 14.85 and 21.95% than that of only glycosylation sample, respectively. These findings could provide technical support for APPJ treatment combination with glycosylation to enhance the physicochemical properties of plant-based proteins.

14.
Food Chem ; 454: 139811, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820631

RESUMO

Autophagy (AU) and programmed cell death (PCD) are dynamically regulated during tomato fruit defense against Botrytis cinerea, which are also manipulated by pathogenic effectors to promote colonization. Present study demonstrated that the enhanced defense induced by transient inhibition on AU by hydroxychloroquine (HCQ) facilitated the restriction of B. cinerea lesion on postharvest tomato. Pre-treatment of 2 mM (16.08 ± 3.42 cm at 7 d) and 6 mM (7.80 ± 2.39 cm at 7 d) HCQ inhibited the lesion development of B. cinerea compared with Mock treatment (50.02 ± 7.69 cm at 7 d). Transient inhibition of AU induced expression of fungal defense and transcriptional regulation related genes, but attenuated reactive oxygen species (ROS) burst gene expression. The ROS-induced PCD was compromised by HCQ with promoted ROS scavenging. The transient pre-treatment of HCQ slightly inhibited AU which triggered the feedback loop that enhanced the autophagic activity defensing against B. cinerea infection.


Assuntos
Autofagia , Botrytis , Doenças das Plantas , Espécies Reativas de Oxigênio , Solanum lycopersicum , Botrytis/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/química , Espécies Reativas de Oxigênio/metabolismo , Autofagia/efeitos dos fármacos , Doenças das Plantas/microbiologia , Apoptose/efeitos dos fármacos , Frutas/química , Frutas/microbiologia , Resistência à Doença , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Anal Chem ; 96(21): 8665-8673, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38722711

RESUMO

Prostate-specific antigen (PSA) is a key marker for a prostate cancer diagnosis. The low sensitivity of traditional lateral flow immunoassay (LFIA) methods makes them unsuitable for point-of-care testing. Herein, we designed a nanozyme by in situ growth of Prussian blue (PB) within the pores of dendritic mesoporous silica (DMSN). The PB was forcibly dispersed into the pores of DMSN, leading to an increase in exposed active sites. Consequently, the atom utilization is enhanced, resulting in superior peroxidase (POD)-like activity compared to that of cubic PB. Antibody-modified DMSN@PB nanozymes serve as immunological probes in an enzymatic-enhanced colorimetric and photothermal dual-signal LFIA for PSA detection. After systematic optimization, the LFIA based on DMSN@PB successfully achieves a 4-fold amplification of the colorimetric signal within 7 min through catalytic oxidation of the chromogenic substrate by POD-like activity. Moreover, DMSN@PB exhibits an excellent photothermal conversion ability under 808 nm laser irradiation. Accordingly, photothermal signals are introduced to improve the anti-interference ability and sensitivity of LFIA, exhibiting a wide linear range (1-40 ng mL-1) and a low PSA detection limit (0.202 ng mL-1), which satisfies the early detection level of prostate cancer. This research provides a more accurate and reliable visualization analysis methodology for the early diagnosis of prostate cancer.


Assuntos
Colorimetria , Ferrocianetos , Nanocompostos , Antígeno Prostático Específico , Antígeno Prostático Específico/análise , Ferrocianetos/química , Imunoensaio/métodos , Humanos , Nanocompostos/química , Masculino , Limite de Detecção , Neoplasias da Próstata/diagnóstico , Dióxido de Silício/química , Porosidade
16.
Int J Pharm ; 658: 124213, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729382

RESUMO

Safe and effective Cu2+ supplementation in local lesion is crucial for minimizing toxicity of DSF-based chemotherapy. Targeted delivery of Cu2+ appears more promising. Intraperitoneal chemotherapy for peritoneal carcinoma (PC) establishes "face-to-face" contact between targeted nanocarriers and tumor tissue. Herein, this study developed a biodegradable, injectable thermosensitive hydrogel that coencapsulating DSF submicroemulsion (DSF-SE) and folate-modified liposome loading glycyrrhizic acid-Cu (FCDL). FCDL acted as 'beneficial horse' to target the tumor-localized folate receptor, thus liberating Cu2+ in tumor nidus. The prepared FCDL and DSF-SE were found with uniform sizes (160.2 nm, 175.4 nm), low surface charge (-25.77 mV, -16.40 mV) and high encapsulation efficiency (97.93 %, 90.08 %). In vitro drug release profile of FCDL, DSF-SE and FCDL&DSF-SE@G followed a sustained release pattern. And the release behavior of Cu2+ from FCDL was pH-related, i.e., Cu2+ was released faster under acidic condition. When FCDL and DSF-SE were loaded into an PLGA-PEG-PLGA-based hydrogel system, FCDL&DSF-SE@G was formed to ensure separated delivery of Cu2+ and DSF in space but synchronized release over time. The rheology experiment showed a satisfactory gelling temperature of 32.7 °C. In vitro cytotoxicity study demonstrated that FCDL&DSF-SE@G significantly lowered the IC50 of free Cu2+/DSF, Cu2+/DSF hydrogel and non-targeted analogue by almost 70 %, 65 % and 32 %, respectively. Accordingly, in tumor-bearing mice, FCDL&DSF-SE@G augmented the tumor inhibition rates for the same formulations by 352 %, 145 % and 44 %, respectively. The main mechanism was attributed to higher uptake of FCDL and DSF-SE, resulting in increased Cu(DDTC)2 formation, ROS production and cell apoptosis. In conclusion, this targeted nanotherapy approach with dual-nanocarriers loaded hydrogel system, with its focus on face-to-face contact between nanocarriers and tumor tissues in the peritoneal cavity, holds significant promise for intraperitoneal chemotherapy in PC.


Assuntos
Cobre , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Ácido Fólico , Lipossomos , Ácido Fólico/química , Ácido Fólico/administração & dosagem , Animais , Cobre/química , Cobre/administração & dosagem , Linhagem Celular Tumoral , Humanos , Ácido Glicirrízico/química , Ácido Glicirrízico/administração & dosagem , Hidrogéis/química , Nanopartículas/química , Camundongos Endogâmicos BALB C , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos , Temperatura , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos Nus , Portadores de Fármacos/química , Polietilenoglicóis/química
17.
Nature ; 630(8015): 96-101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750361

RESUMO

Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1-3 and ultimately enhances device performance4-7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8-10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm-1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.

18.
Front Oncol ; 14: 1362436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720811

RESUMO

Objective: This review aims to provide a quantitative and qualitative bibliometric analysis of literature from 2013 to 2023 on the role of exosomes in PC, with the goal of identifying current trends and predicting future hotspots. Methods: We retrieved relevant publications concerning exosomes in PC, published between 2013 and 2023, from the Web of Science Core Collection. Bibliometric analyses were conducted using VOSviewer(1.6.19), CiteSpace(6.2.R4), and Microsoft Excel (2019). Results: A total of 624 papers were analyzed, authored by 4017 researchers from 55 countries/regions and 855 institutions, published in 258 academic journals. China (n=285, 34.42%) and the United States (n=183, 24.87%) were the most frequent contributors and collaborated closely. However, publications from China had a relatively low average number of citations (41.45 times per paper). The output of Shanghai Jiao Tong University ranked first, with 28 papers (accounting for 4.5% of the total publications). Cancers (n=31, 4.9%); published the most papers in this field. Researcher Margot Zoeller published the most papers (n=12) on this topic. Research hotspots mainly focused on the mechanisms of exosomes in PC onset and progression, the role of exosomes in PC early diagnosis and prognosis, exosomes promote the development of PC chemoresistance, and potential applications of exosomes as drug carriers for PC therapies. We observed a shift in research trends, from mechanistic studies toward clinical trials, suggesting that clinical applications will be the focus of future attention. Emerging topics were pancreatic stellate cells, diagnostic biomarkers, mesenchymal stem cells, extracellular vesicles. Conclusion: Our scientometric and visual analysis provides a comprehensive overview of the literature on the role of exosomes in PC published during 2013-2023. This review identifies the frontiers and future directions in this area over the past decade, and is expected to provide a useful reference for researchers in this field.

19.
Adv Sci (Weinh) ; : e2309062, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696653

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) has become the leading cause of death worldwide, and early diagnosis and treatment of atherosclerosis (AS) are crucial for reducing the occurrence of acute cardiovascular events. However, early diagnosis of AS is challenging, and oral anti-AS drugs suffer from limitations like imprecise targeting and low bioavailability. To overcome the aforementioned shortcomings, Cur/MOF@DS is developed, a nanoplatform integrating diagnosis and treatment by loading curcumin (Cur) into metal-organic frameworks with nanozymes and magnetic resonance imaging (MRI) properties. In addition, the surface-modification of dextran sulfate (DS) enables PCN-222(Mn) effectively target scavenger receptor class A in macrophages or foam cells within the plaque region. This nanoplatform employs mechanisms that effectively scavenge excessive reactive oxygen species in the plaque microenvironment, promote macrophage autophagy and regulate macrophage polarization to realize lipid regulation. In vivo and in vitro experiments confirm that this nanoplatform has outstanding MRI performance and anti-AS effects, which may provide a new option for early diagnosis and treatment of AS.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38717533

RESUMO

PURPOSE: We sought to detect left ventricular (LV) adverse alterations in structure and function in type 2 diabetes mellitus (T2DM) patients with or without mild renal dysfunction (MRD) using comprehensive echocardiography techniques and to explore the independent risk factors for LV remodeling (LVR) and dysfunction in these patients. METHODS: The study included 82 T2DM patients with normal LV ejection fraction (presence (n = 42)/absence (n = 40) of MRD). Age- and gender-matched controls (n = 40) were also recruited. LV structure and function were evaluated using conventional echocardiography and three-dimensional speckle tracking echocardiography (3DSTE). Global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS), and global radial strain (GRS) were all measured using 3DSTE. RESULTS: Compared with the controls with absolute advantage of LV normal geometry, LVR was more frequently present in the two T2DM groups, with the largest proportion in those with T2DM and MRD (P < 0.001). Fasting plasma glucose (FPG) and MRD were both significant risk factors for LVR in T2DM patients. The detection rates of LV diastolic dysfunction and subclinical systolic dysfunction were significantly higher in the T2DM groups than in the controls (P = 0.000). Moreover, the two case groups also showed significantly lower strain values in multiple directions than the controls (all P < 0.05). FPG was significantly associated with LV diastolic dysfunction, whereas FPG and MRD were both significantly associated with subclinical LV systolic dysfunction in T2DM patients. CONCLUSIONS: The combined use of conventional echocardiography and 3DSTE allowed the timely detection of early cardiac damage in T2DM patients with or without MRD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...