Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Divers ; 46(1): 91-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343590

RESUMO

Climate change poses a serious long-term threat to biodiversity. To effectively reduce biodiversity loss, conservationists need to have a thorough understanding of the preferred habitats of species and the variables that affect their distribution. Therefore, predicting the impact of climate change on species-appropriate habitats may help mitigate the potential threats to biodiversity distribution. Xerophyta, a monocotyledonous genus of the family Velloziaceae is native to mainland Africa, Madagascar, and the Arabian Peninsula. The key drivers of Xerophyta habitat distribution and preference are unknown. Using 308 species occurrence data and eight environmental variables, the MaxEnt model was used to determine the potential distribution of six Xerophyta species in Africa under past, current and future climate change scenarios. The results showed that the models had a good predictive ability (Area Under the Curve and True Skill Statistics values for all SDMs were more than 0.902), indicating high accuracy in forecasting the potential geographic distribution of Xerophyta species. The main bioclimatic variables that impacted potential distributions of most Xerophyta species were mean temperature of the driest quarter (Bio9) and precipitation of the warmest quarter (Bio18). According to our models, tropical Africa has zones of moderate and high suitability for Xerophyta taxa, which is consistent with the majority of documented species localities. The habitat suitability of the existing range of the Xerophyta species varied based on the climate scenario, with most species experiencing a range loss greater than the range gain regardless of the climate scenario. The projected spatiotemporal patterns of Xerophyta species help guide recommendations for conservation efforts.

2.
Sci Rep ; 13(1): 7237, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142659

RESUMO

Polygonatum Miller belongs to the tribe Polygonateae of Asparagaceae. The horizontal creeping fleshy roots of several species in this genus serve as traditional Chinese medicine. Previous studies have mainly reported the size and gene contents of the plastomes, with little information on the comparative analysis of the plastid genomes of this genus. Additionally, there are still some species whose chloroplast genome information has not been reported. In this study, the complete plastomes of six Polygonatum were sequenced and assembled, among them, the chloroplast genome of P. campanulatum was reported for the first time. Comparative and phylogenetic analyses were then conducted with the published plastomes of three related species. Results indicated that the whole plastome length of the Polygonatum species ranged from 154,564 bp (P. multiflorum) to 156,028 bp (P. stenophyllum) having a quadripartite structure of LSC and SSC separated by two IR regions. A total of 113 unique genes were detected in each of the species. Comparative analysis revealed that gene content and total GC content in these species were highly identical. No significant contraction or expansion was observed in the IR boundaries among all the species except P. sibiricum1, in which the rps19 gene was pseudogenized owing to incomplete duplication. Abundant long dispersed repeats and SSRs were detected in each genome. There were five remarkably variable regions and 14 positively selected genes were identified among Polygonatum and Heteropolygonatum. Phylogenetic results based on chloroplast genome strongly supported the placement of P. campanulatum with alternate leaves in sect. Verticillata, a group characterized by whorled leaves. Moreover, P. verticillatum and P. cyrtonema were displayed as paraphyletic. This study revealed that the characters of plastomes in Polygonatum and Heteropolygonatum maintained a high degree of similarity. Five highly variable regions were found to be potential specific DNA barcodes in Polygonatum. Phylogenetic results suggested that leaf arrangement was not suitable as a basis for delimitation of subgeneric groups in Polygonatum and the definitions of P. cyrtonema and P. verticillatum require further study.


Assuntos
Asparagaceae , Genoma de Cloroplastos , Genomas de Plastídeos , Polygonatum , Filogenia , Genoma de Cloroplastos/genética , Polygonatum/genética , Asparagaceae/genética
3.
Front Genet ; 14: 1131644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992699

RESUMO

Moringa is a mono-genus belonging to the Moringaceae family, which includes 13 species. Among them, Moringa peregrina is plant species native to the Arabian Peninsula, Southern Sinai in Egypt, and the Horn of Africa, and comprehensive studies on its nutritional, industrial, and medicinal values have been performed. Herein, we sequenced and analyzed the initial complete chloroplast genome of Moringa peregrina. Concurrently, we analyzed the new chloroplast genome along with 25 chloroplast genomes related to species representing eight families in the Brassicales order. The results indicate that the plastome sequence of M. peregrina consists of 131 genes, with an average GC content of 39.23%. There is a disparity in the IR regions of the 26 species ranging from 25,804 to 31,477 bp. Plastome structural variations generated 20 hotspot regions that could be considered prospective DNA barcode locations in the Brassicales order. Tandem repeats and SSR structures are reported as significant evidence of structural variations among the 26 tested specimens. Furthermore, selective pressure analysis was performed to estimate the substitution rate within the Moringaceae family, which revealing that the ndhA and accD genes are under positive selective pressure. The phylogenetic analysis of the Brassicales order produced an accurate monophyletic annotation cluster of the Moringaceae and Capparaceae species, offering unambiguous identification without overlapping groups between M. oleifera and M. peregrina, which are genetically strongly associated. Divergence time estimation suggests that the two Moringa species recently diversified, 0.467 Ma. Our findings highlight the first complete plastome of the Egyptian wild-type of M. peregrina, which can be used for determining plastome phylogenetic relationships and systematic evolution history within studies on the Moringaceae family.

4.
BMC Genomics ; 23(1): 566, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941527

RESUMO

BACKGROUND: The genus Verbascum L. (Scrophulariaceae) is distributed in Africa, Europe, and parts of Asia, with the Mediterranean having the most species variety. Several researchers have already worked on the phylogenetic and taxonomic analysis of Verbascum by using ITS data and chloroplast genome fragments and have produced different conclusions. The taxonomy and phylogenetic relationships of this genus are unclear. RESULTS: The complete plastomes (cp) lengths for V. chaixii, V. songaricum, V. phoeniceum, V. blattaria, V. sinaiticum, V. thapsus, and V. brevipedicellatum ranged from 153,014 to 153,481 bp. The cp coded 114 unique genes comprising of 80 protein-coding genes, four ribosomal RNA (rRNA), and 30 tRNA genes. We detected variations in the repeat structures, gene expansion on the inverted repeat, and single copy (IR/SC) boundary regions. The substitution rate analysis indicated that some genes were under purifying selection pressure. Phylogenetic analysis supported the sister relationship of (Lentibulariaceae + Acanthaceae + Bignoniaceae + Verbenaceae + Pedaliaceae) and (Lamiaceae + Phyrymaceae + Orobanchaceae + Paulowniaceae + Mazaceae) in Lamiales. Within Scrophulariaceae, Verbascum was sister to Scrophularia, while Buddleja formed a monophyletic clade from (Scrophularia + Verbascum) with high bootstrap support values. The relationship of the nine species within Verbascum was highly supported. CONCLUSION: Based on the phylogenetic results, we proposed to reinstate the species status of V. brevipedicellatum (Engl.) Hub.-Mor. Additionally, three genera (Mazus, Lancea, and Dodartia) placed in the Phyrymaceae family formed a separate clade within Lamiaceae. The classification of the three genera was supported by previous studies. Thus, the current study also suggests the circumscription of these genera as documented previously to be reinstated. The divergence time of Lamiales was approximated to be 86.28 million years ago (Ma) (95% highest posterior density (HPD), 85.12-89.91 Ma). The complete plastomes sequence data of the Verbascum species will be important for understanding the Verbascum phylogenetic relationships and evolution in order Lamiales.


Assuntos
Genoma de Cloroplastos , Lamiales , Scrophulariaceae , Verbascum , Genômica , Lamiales/genética , Filogenia , Scrophulariaceae/genética , Verbascum/genética
5.
BMC Plant Biol ; 22(1): 387, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918646

RESUMO

BACKGROUND: Calanthe (Epidendroideae, Orchidaceae) is a pantropical genus distributed in Asia and Africa. Its species are of great importance in terms of economic, ornamental and medicinal values. However, due to limited and confusing delimitation characters, the taxonomy of the Calanthe alliance (Calanthe, Cephalantheropsis, and Phaius) has not been sufficiently resolved. Additionally, the limited genomic information has shown incongruences in its systematics and phylogeny. In this study, we used illumina platform sequencing, performed a de novo assembly, and did a comparative analysis of 8 Calanthe group species' plastomes: 6 Calanthe and 2 Phaius species. Phylogenetic analyses were used to reconstruct the relationships of the species as well as with other species of the family Orchidaceae. RESULTS: The complete plastomes of the Calanthe group species have a quadripartite structure with varied sizes ranging between 150,105bp-158,714bp, including a large single-copy region (LSC; 83,364bp- 87,450bp), a small single-copy region (SSC; 16,297bp -18,586bp), and a pair of inverted repeat regions (IRs; 25,222bp - 26,430bp). The overall GC content of these plastomes ranged between 36.6-36.9%. These plastomes encoded 131-134 differential genes, which included 85-88 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. Comparative analysis showed no significant variations in terms of their sequences, gene content, gene order, sequence repeats and the GC content hence highly conserved. However, some genes were lost in C. delavayi (P. delavayi), including ndhC, ndhF, and ndhK genes. Compared to the coding regions, the non-coding regions had more sequence repeats hence important for species DNA barcoding. Phylogenetic analysis revealed a paraphyletic relationship in the Calanthe group, and confirmed the position of Phaius delavayi in the genus Calanthe as opposed to its previous placement in Phaius. CONCLUSION: This study provides a report on the complete plastomes of 6 Calanthe and 2 Phaius species and elucidates the structural characteristics of the plastomes. It also highlights the power of plastome data to resolve phylogenetic relationships and clarifies taxonomic disputes among closely related species to improve our understanding of their systematics and evolution. Furthermore, it also provides valuable genetic resources and a basis for studying evolutionary relationships and population genetics among orchid species.


Assuntos
Genoma de Cloroplastos , Orchidaceae , Ordem dos Genes , Genoma , Genômica , Orchidaceae/genética , Filogenia
6.
Front Plant Sci ; 13: 867659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646034

RESUMO

Recently, the systematic status of Fortunella Swingle and its taxonomy has attracted much attention. Flora of China incorporates Fortunella into Citrus Linn. and treats all species of the traditional Fortunella as one species, namely Citrus japonica (Thunb.) Swingle. Furthermore, F. venosa (Champ. ex Benth.) C. C. Huang and F. hindsii (Champ. ex Benth.) Swingle are currently considered as synonyms of C. japonica. In this paper, morphological, palynological, and phylogenetic analyses were used to systematically explore the taxonomic status of traditional Fortunella. The key morphological features that differed among the Fortunella species were the leaf and the petiole hence could be key in its taxonomic classification of the species. Additionally, pollen morphological analysis based on the pollen size, germination grooves, polar, and equatorial axes also supported the separation of the species. The results of the phylogenetic analysis showed that each of the three species clustered separately, hence strongly supporting the conclusion of independent species. In addition, the phylogenetic analysis showed that the two genera clustered closely together hence our results support the incorporation of Fortunella into Citrus. Based on the above, this article has revised the classification of the traditional Fortunella and determined that this genus has three species, namely; F. venosa, F. hindsii, and F. japonica. F. venosa and F. hindsii are placed in the Citrus as separate species, and their species names still use the previous specific epithet. The revised scientific names of the new combinations of F. venosa and F. hindsii are as follows: Citrus venosa (Champ. ex Benth.) K. M. Liu, X. Z. Cai, and G. W. Hu, comb. nov. and Citrus hindsii (Champ. ex Benth.) K. M. Liu, G. W. Hu, and X. Z. Cai, comb. nov. F. venosa is the original species of Fortunella, F. venosa and F. hindsii are both listed as the second-class key protected wild plants in China. Therefore, the establishment of the taxonomic status of F. venosa and F. hindsii not only deepens our understanding, importance, and the complexity of the systematic classification of Fortunella, but is also significant for global biodiversity conservation, genetic resources for breeding purposes, and population genetics.

7.
J Ethnopharmacol ; 295: 115404, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643208

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been extensively used to treat various illnesses since the dawn of civilization. The genus Didymorcapus Wall. comprises 100 species widely distributed in the tropical regions of Asia, with a few found scattered in Africa and Australia. Species in this genus have long been used in folk medicine to treat various illnesses, including wounds, kidney stones, inflammations, asthma, flu, eczema, dysentery, fractures, colic etc. Some species have applications as weight loss agents, laxatives, and protective medication after childbirth. AIM: To provide comprehensive information on the current knowledge of the ethnobotanical uses, phytochemical compounds, pharmacological applications, and toxicology of genus Didymocarpus to reveal its therapeutic potential, offering insights into future research opportunities. MATERIALS AND METHODS: Data were systematically obtained from books and online databases such as PubMed, Web of Science, Scopus, Sci Finder, Google Scholar, Science direct, ACS Publications, Elsevier, Wiley Online Library. RESULTS: Seventeen Didymocarpus species have applications in traditional medicine in different Asian countries. A total of 166 compounds have been isolated from the genus Didymocarpus including terpenoids, flavonoids, phenolic compounds, fatty acids, chalcones, steroids, and others. Among these constituents, terpenoids, flavonoids, chalcones, and phenolics are the significant contributors to pharmacological activities of the genus Didymocarpus, possessing wide-reaching biological activities both in vivo and in vitro. The crude extracts and isolated phytochemical compounds from this genus have been shown to exhibit various pharmacological activities, including antiurolithiatic, nephro-protective, antimicrobial, anticancer, antidiabetic, cytotoxic, wound healing, and antioxidant activities. CONCLUSIONS: Traditional uses and scientific evaluation of Didymocarpus indicate that Didymocarpus pedicellata is one of the most widely used species in some parts of the world. Although substantial progress on the chemical and pharmacological properties of Didymocarpus species has been made, further studies on the pharmacology and toxicology of these species are needed to ensure safety, efficacy, and quality. Also, further research on the structure-activity relationship of some of the isolated phytocompounds may improve their biological potency and scientific exploitation of traditional uses of the Didymocarpus taxa.


Assuntos
Chalconas , Lamiales , Etnobotânica , Etnofarmacologia , Compostos Fitoquímicos , Fitoterapia , Extratos Vegetais/farmacologia , Terpenos
8.
Front Plant Sci ; 13: 828467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283921

RESUMO

Coleanthus subtilis (Tratt.) Seidel (Poaceae) is an ephemeral grass from the monotypic genus Coleanthus Seidl, which grows on wet muddy areas such as fishponds or reservoirs. As a rare species with strict habitat requirements, it is protected at international and national levels. In this study, we sequenced its whole chloroplast genome for the first time using the next-generation sequencing (NGS) technology on the Illumina platform, and performed a comparative and phylogenetic analysis with the related species in Poaceae. The complete chloroplast genome of C. subtilis is 135,915 bp in length, with a quadripartite structure having two 21,529 bp inverted repeat regions (IRs) dividing the entire circular genome into a large single copy region (LSC) of 80,100 bp and a small single copy region (SSC) of 12,757 bp. The overall GC content is 38.3%, while the GC contents in LSC, SSC, and IR regions are 36.3%, 32.4%, and 43.9%, respectively. A total of 129 genes were annotated in the chloroplast genome, including 83 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. The accD gene and the introns of both clpP and rpoC1 genes were missing. In addition, the ycf1, ycf2, ycf15, and ycf68 were pseudogenes. Although the chloroplast genome structure of C. subtilis was found to be conserved and stable in general, 26 SSRs and 13 highly variable loci were detected, these regions have the potential to be developed as important molecular markers for the subfamily Pooideae. Phylogenetic analysis with species in Poaceae indicated that Coleanthus and Phippsia were sister groups, and provided new insights into the relationship between Coleanthus, Zingeria, and Colpodium. This study presents the initial chloroplast genome report of C. subtilis, which provides an essential data reference for further research on its origin.

9.
J Ethnopharmacol ; 292: 115102, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35288288

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Sambucus L. (Viburnaceae) consists of about 29 recognized species distributed in all regions of the world except the extremely cold and desert areas. Some species have been used as traditional medicines to treat various disorders such as bone fractures, rheumatism, diabetes, respiratory and pulmonary disorders, skin diseases, inflammatory ailments, diarrhea, and others. However, the currently available data on traditional and pharmacological uses have not been comprehensively reviewed. STUDY AIM: The present review is designed to provide information on the ethnobotanical uses, phytochemistry, toxicity, and the known biological properties of Sambucus, to understand their connotations and provide a scientific basis and gaps for further research. MATERIALS AND METHODS: The information was obtained from different bibliographic databases, Google Scholar, Springer Link, Web of Science, PubMed, and Science Direct along with other literature sources such as dissertation before August 2021. The scientific names were validated using The Plant List and World Flora Online websites. RESULTS: Twelve Sambucus species were found to be frequently mentioned in ethnomedical uses recorded in China, Korea, Turkey, Iran, and other countries. Traditionally, they have been used as remedies to numerous health complications among others, bone fractures and rheumatism, diabetes, wounds, inflammatory diseases, diarrhea, menstrual pains, respiratory and pulmonary complaints, skin disorders, headaches, snakebites, and urinary tract infections. To date, only eleven species have been studied for their chemical compounds and a total of 425 bioactive constituents, including phenolic compounds, terpenoids, fatty acids, cyanogenic glycosides, phytosterols, lectins, organic acids, alkaloid, coumarin, anthraquinone, and others have been reported. The crude extracts and the isolated chemical constituents exhibited diverse outstanding pharmacological activities including antioxidant, antimicrobial, antidiabetic, anti-inflammatory, antidepressant, analgesic, anti-giardial, immunomodulatory, scolicidal, anti-ulcerogenic, antiradical, bone-protective, anti-glycemic, antiosteoporotic, hypolipidemic, anti-glycation, and wound-healing properties. CONCLUSION: This study summarized and scrutinized the data on traditional uses, pharmacological activities, phytochemicals, and toxicity of Sambucus species, which indicate they have interesting chemical compounds with diverse biological activities. Many traditional uses of some species from this genus have now been confirmed by pharmacological activities, such as antioxidant, antimicrobial, bone-protective, wound healing, anti-inflammatory, and analgesic properties. However, the currently available data has several gaps in understanding the traditional uses of all Sambucus species. Thus, we strongly recommend further investigations into the scientific connotations between traditional medicinal uses and pharmacological activities, mode of action of the isolated bioactive constituents, and toxicity of other Sambucus species to unravel their efficacy and therapeutic potential for safe clinical application. The current extensive study avails valuable information on therapeutic use of Sambucus species and paves way for further investigations of other useful species, as well as drug discovery.


Assuntos
Anti-Infecciosos , Fraturas Ósseas , Doenças Reumáticas , Sambucus , Analgésicos , Antioxidantes , Diarreia/tratamento farmacológico , Etnobotânica , Etnofarmacologia , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/toxicidade , Fitoterapia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Doenças Reumáticas/tratamento farmacológico
10.
Front Plant Sci ; 12: 691833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194461

RESUMO

Acanthochlamys P.C. Kao is a Chinese endemic monotypic genus, whereas Xerophyta Juss. is a genus endemic to Africa mainland, Arabian Peninsula and Madagascar with ca.70 species. In this recent study, the complete chloroplast genome of Acanthochlamys bracteata was sequenced and its genome structure compared with two African Xerophyta species (Xerophyta spekei and Xerophyta viscosa) present in the NCBI database. The genomes showed a quadripartite structure with their sizes ranging from 153,843 bp to 155,498 bp, having large single-copy (LSC) and small single-copy (SSC) regions divided by a pair of inverted repeats (IR regions). The total number of genes found in A. bracteata, X. spekei and X. viscosa cp genomes are 129, 130, and 132, respectively. About 50, 29, 28 palindromic, forward and reverse repeats and 90, 59, 53 simple sequence repeats (SSRs) were found in the A. bracteata, X. spekei, and X. viscosa cp genome, respectively. Nucleotide diversity analysis in all species was 0.03501, Ka/Ks ratio average score was calculated to be 0.26, and intergeneric K2P value within the Order Pandanales was averaged to be 0.0831. Genomic characterization was undertaken by comparing the genomes of the three species of Velloziaceae and it revealed that the coding regions were more conserved than the non-coding regions. However, key variations were noted mostly at the junctions of IRs/SSC regions. Phylogenetic analysis suggests that A. bracteata species has a closer genetic relationship to the genus Xerophyta. The present study reveals the complete chloroplast genome of A. bracteata and gives a genomic comparative analysis with the African species of Xerophyta. Thus, can be useful in developing DNA markers for use in the study of genetic variabilities and evolutionary studies in Velloziaceae.

11.
Plants (Basel) ; 10(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807757

RESUMO

The genus Hydnora (Hydnoraceae) is one of the basal angiosperms in the order Piperales, found in the semi-arid regions of Africa, and the Southern Arabian Peninsula. Plants in this genus play essential roles in communities around the world as revealed by various studies. Currently, there are eight species of the genus Hydnora; seven in Africa and one in the Arabian Peninsula. Notably, Hydnora abyssinica A.Br. and Hydnora africana Thunb. are widely distributed compared to other species. They are widely used for their medicinal and nutritional values. The information on ethnobotany, chemistry, pharmacology, and distribution of genus Hydnora was gathered using phytochemical and ethnobotanical books, electronic sources, and published articles. Preliminary phytochemical screening shows that flavonoids, phenolics, proanthocyanidins, and tannins are the main compounds in H. abyssinica and H. africana. Furthermore, 11 compounds have been isolated from H. abyssinica. The biological activities of H. abyssinica and H. africana have been reported. They include antibacterial, antiproliferative, antioxidant, antidiarrhea, and antifungal potentials. Despite the Hydnora species being practiced in ancient folkloric medicine, their traditional uses and pharmacological value are poorly documented. Based on the available information on ethnobotany, phytochemistry, pharmacology, and distribution, we aim to provide research gaps and challenges for a better understanding of this genus. This may be resourceful in the development of effective phytomedicines, and aid in conservation. The available studies on this genus on some aspects such as phytochemistry, pharmacological activities, and distribution are under-reported hence the need for further research.

12.
Front Plant Sci ; 12: 814833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211136

RESUMO

Hoya is a genus in Apocynaceae-Asclepiadoideae, known for its showy wax flowers, making it a popular ornamental plant. However, phylogenetic relationships among most Hoya species are not yet fully resolved. In this study, we sequenced 31 plastomes of Hoya group species using genome skimming data and carried out multiple analyses to understand genome variation to resolve the phylogenetic positions of some newly sequenced Chinese endemic species. We also screened possible hotspots, trnT-trnL-trnF, psba-trnH, and trnG-UCC, ndhF, ycf1, matK, rps16, and accD genes that could be used as molecular markers for DNA barcoding and species identification. Using maximum likelihood (ML) and Bayesian Inference (BI), a species phylogeny was constructed. The newly assembled plastomes genomes showed the quasi-tripartite structure characteristic for Hoya and Dischidia with a reduced small single copy (SSC) and extremely enlarged inverted repeats (IR). The lengths ranged from 175,404 bp in Hoya lacunosa to 179,069 bp in H. ariadna. The large single copy (LSC) regions ranged from 80,795 bp (Hoya liangii) to 92,072 bp (Hoya_sp2_ZCF6006). The massively expanded IR regions were relatively conserved in length, with the small single-copy region reduced to a single gene, ndhF. We identified 235 long dispersed repeats (LDRs) and ten highly divergent hotspots in the 31 Hoya plastomes, which can be used as DNA barcodes for species identification. The phylogeny supports Clemensiella as a distinct genus. Hoya ignorata is resolved as a relative to Clade VI species. This study discloses the advantages of using Plastome genome data to study phylogenetic relationships.

13.
Plants (Basel) ; 9(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752116

RESUMO

Rhipsalis baccifera is the only cactus that naturally occurs in both the New World and the Old World, and has thus drawn the attention of most researchers. The complete chloroplast (cp) genome of R. baccifera is reported here for the first time. The cp genome of R. baccifera has 122, 333 base pairs (bp), with a large single-copy (LSC) region (81,459 bp), SSC (23,531 bp) and two inverted repeat (IR) regions each 8530 bp. The genome contains 110 genes, with 73 protein-coding genes, 31 tRNAs, 4 rRNAs and 2 pseudogenes. Twelve genes have introns, with loss of introns being observed in, rpoc1clpP and rps12 genes. 49 repeat sequences and 62 simple sequence repeats (SSRs) were found in the genome. Comparative analysis with eight species of the ACPT (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae) clade of the suborder Portulacineae species, showed that R. baccifera genome has higher number of rearrangements, with a 19 gene inversion in its LSC region representing the most significant structural change in terms of its size. Inversion of the SSC region seems common in subfamily Cactoideae, and another 6 kb gene inversion between rbcL- trnM was observed in R. baccifera and Carnegiea gigantea. The IRs of R. baccifera are contracted. The phylogenetic analysis among 36 complete chloroplast genomes of Caryophyllales species and two outgroup species supported monophyly of the families of the ACPT clade. R. baccifera occupied a basal position of the family Cactaceae clade in the tree. A high number of rearrangements in this cp genome suggests a larger number mutation events in the history of evolution of R. baccifera. These results provide important tools for future work on R. baccifera and in the evolutionary studies of the suborder Portulacineae.

14.
PhytoKeys ; 147: 1-191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32476978

RESUMO

The inadequacy of information impedes society's competence to find out the cause or degree of a problem or even to avoid further losses in an ecosystem. It becomes even harder to identify all the biological resources at risk because there is no exhaustive inventory of either fauna or flora of a particular region. Coastal forests of Kenya are located in the southeast part of Kenya and are distributed mainly in four counties: Kwale, Kilifi, Lamu, and Tana River County. They are a stretch of fragmented forests ca. 30-120 km away from the Indian Ocean, and they have existed for millions of years. Diversity of both fauna and flora is very high in these relicts and the coastal forests of Eastern Africa, extending along the coast from Somalia through Kenya and Tanzania to Mozambique, are ranked among the priority biodiversity hotspot in the world. In spite of the high plant species richness and their importance towards supporting the livelihoods of the communities that live around them, floristic studies in these forests have remained poorly investigated. Hence, based on numerous field investigations, plant lists from published monograph/literature, and data from BRAHMS (Botanical Records and Herbarium Management System) database at East African herbarium (EA), we present a detailed checklist of vascular plants recorded in this region. Our results show that Kenyan coastal forests play an essential role in the flora of Kenya and the plant diversity of the coastal forests of East Africa. The checklist represents 176 families, 981 genera, 2489 species, 100 infraspecific taxa, 90 endemic plants species, 72 exotic species, and 120 species that are included in the current IUCN Red List of Threatened Species as species of major concern. We also discovered three new species to the world from these relicts. Thus, Kenyan coastal forests present a remarkable and significant center of plant diversity.

15.
Mitochondrial DNA B Resour ; 5(1): 100-101, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33366441

RESUMO

The complete chloroplast genome sequence of Xerophyta spekei Baker was reported in this study. The complete chloroplast genome showed a stereotypical quadripartite structure as observed in other angiosperms with a length of 155,235 bp and divided into four parts; a pair of IRs (27,109 bp) which is separated by a small single copy (SSC) region (17,388 bp) and a large single copy (LSC) region (83,629bp). The chloroplast genome had 132 genes, including 85 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Seven protein-coding genes were identified to have RNA editing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...