Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 536535, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329414

RESUMO

The microbial ecology of the deep biosphere is difficult to characterize, owing in part to sampling challenges and poorly understood response mechanisms to environmental change. Pre-drilled wells, including oil wells or boreholes, offer convenient access, but sampling is frequently limited to the water alone, which may provide only a partial view of the native diversity. Mineral heterogeneity demonstrably affects colonization by deep biosphere microorganisms, but the connections between the mineral-associated and planktonic communities remain unclear. To understand the substrate effects on microbial colonization and the community response to changes in organic carbon, we conducted an 18-month series of in situ experiments in a warm (57°C), anoxic, fractured carbonate aquifer at 752 m depth using replicate open, screened cartridges containing different solid substrates, with a proteinaceous organic matter perturbation halfway through this series. Samples from these cartridges were analyzed microscopically and by Illumina (iTag) 16S rRNA gene libraries to characterize changes in mineralogy and the diversity of the colonizing microbial community. The substrate-attached and planktonic communities were significantly different in our data, with some taxa (e.g., Candidate Division KB-1) rare or undetectable in the first fraction and abundant in the other. The substrate-attached community composition also varied significantly with mineralogy, such as with two Rhodocyclaceae OTUs, one of which was abundant on carbonate minerals and the other on silicic substrates. Secondary sulfide mineral formation, including iron sulfide framboids, was observed on two sets of incubated carbonates. Notably, microorganisms were attached to the framboids, which were correlated with abundant Sulfurovum and Desulfotomaculum sp. sequences in our analysis. Upon organic matter perturbation, mineral-associated microbial diversity differences were temporarily masked by the dominance of putative heterotrophic taxa in all samples, including OTUs identified as Caulobacter, Methyloversatilis, and Pseudomonas. Subsequent experimental deployments included a methanogen-dominated stage (Methanobacteriales and Methanomicrobiales) 6 months after the perturbation and a return to an assemblage similar to the pre-perturbation community after 9 months. Substrate-associated community differences were again significant within these subsequent phases, however, demonstrating the value of in situ time course experiments to capture a fraction of the microbial assemblage that is frequently difficult to observe in pre-drilled wells.

2.
Astrobiology ; 19(6): 771-784, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30822105

RESUMO

Terrestrial icy environments have been found to preserve organic material and contain habitable niches for microbial life. The cryosphere of other planetary bodies may therefore also serve as an accessible location to search for signs of life. The Wireline Analysis Tool for the Subsurface Observation of Northern ice sheets (WATSON) is a compact deep-UV fluorescence spectrometer for nondestructive ice borehole analysis and spatial mapping of organics and microbes, intended to address the heterogeneity and low bulk densities of organics and microbial cells in ice. WATSON can be either operated standalone or integrated into a wireline drilling system. We present an overview of the WATSON instrument and results from laboratory experiments intended to determine (i) the sensitivity of WATSON to organic material in a water ice matrix and (ii) the ability to detect organic material under various thicknesses of ice. The results of these experiments show that in bubbled ice the instrument has a depth of penetration of 10 mm and a detection limit of fewer than 300 cells. WATSON incorporates a scanning system that can map the distribution of organics and microbes over a 75 by 25 mm area. WATSON demonstrates a sensitive fluorescence mapping technique for organic and microbial detection in icy environments including terrestrial glaciers and ice sheets, and planetary surfaces including Europa, Enceladus, or the martian polar caps.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno/química , Camada de Gelo/química , Compostos Orgânicos/análise , Júpiter , Marte , Espectrometria de Fluorescência/métodos , Raios Ultravioleta
3.
Environ Microbiol Rep ; 9(5): 501-511, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28677247

RESUMO

Earth's deep subsurface biosphere (DSB) is home to a vast number and wide variety of microorganisms. Although difficult to access and sample, deep subsurface environments have been probed through drilling programs, exploration of mines and sampling of deeply sourced vents and springs. In an effort to understand the ecology of deep terrestrial habitats, we examined bacterial diversity in the Sanford Underground Research Facility (SURF), the former Homestake gold mine, in South Dakota, USA. Whole genomic DNA was extracted from deeply circulating groundwater and corresponding host rock (at a depth of 1.45 km below ground surface). Pyrotag DNA sequencing of the 16S rRNA gene revealed diverse communities of putative chemolithoautotrophs, aerobic and anaerobic heterotrophs, numerous candidate phyla and unique rock-associated microbial assemblage. There was a clear and near-total separation of communities between SURF deeply circulating fracture fluids and SURF host-rocks. Sequencing data from SURF compared against five similarly sequenced terrestrial subsurface sites in Europe and North America revealed classes Clostridia and Betaproteobacteria were dominant in terrestrial fluids. This study presents a unique analysis showing differences in terrestrial subsurface microbial communities between fracture fluids and host rock through which those fluids permeate.


Assuntos
Bactérias/classificação , Bactérias/genética , Sedimentos Geológicos/microbiologia , Filogenia , Microbiologia do Solo , Microbiologia da Água , Biodiversidade , DNA Bacteriano , RNA Ribossômico 16S/genética
4.
Front Microbiol ; 8: 363, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344573

RESUMO

Phylogenetically and metabolically diverse bacterial communities have been found in association with submarine basaltic glass surfaces. The driving forces behind basalt colonization are for the most part unknown. It remains ambiguous if basalt provides ecological advantages beyond representing a substrate for surface colonization, such as supplying nutrients and/or energy. Pseudomonas stutzeri VS-10, a metabolically versatile bacterium isolated from Vailulu'u Seamount, was used as a model organism to investigate the physiological responses observed when biofilms are established on basaltic glasses. In Fe-limited heterotrophic media, P. stutzeri VS-10 exhibited elevated growth in the presence of basaltic glass. Diffusion chamber experiments demonstrated that physical attachment or contact of soluble metabolites such as siderophores with the basaltic glass plays a pivotal role in this process. Electrochemical data indicated that P. stutzeri VS-10 is able to use solid substrates (electrodes) as terminal electron donors and acceptors. Siderophore production and heterotrophic Fe(II) oxidation are discussed as potential mechanisms enhancing growth of P. stutzeri VS-10 on glass surfaces. In correlation with that we discuss the possibility that metabolic versatility could represent a common and beneficial physiological trait in marine microbial communities being subject to oligotrophic and rapidly changing deep-sea conditions.

5.
Environ Microbiol ; 19(6): 2182-2191, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28205416

RESUMO

Members of the actinomycete genus Streptomyces are non-motile, filamentous bacteria that are well-known for the production of biomedically relevant secondary metabolites. While considered obligate aerobes, little is known about how these bacteria respond to periods of reduced oxygen availability in their natural habitats, which include soils and ocean sediments. Here, we provide evidence that the marine streptomycete strain CNQ-525 can reduce MnO2 via a diffusible mechanism. We investigated the effects of hypoxia on secondary metabolite production and observed a shift away from the antibiotic napyradiomycin towards 8-amino-flaviolin, an intermediate in the napyradiomycin biosynthetic pathway. We purified 8-amino-flaviolin and demonstrated that it is reversibly redox-active (midpoint potential -474.5 mV), indicating that it has the potential to function as an endogenous extracellular electron shuttle. This study provides evidence that environmentally triggered changes in secondary metabolite production may provide clues to the ecological functions of specific compounds, and that Gram-positive bacteria considered to be obligate aerobes may play previously unrecognized roles in biogeochemical cycling through mechanisms that include extracellular electron shuttling.


Assuntos
Anaerobiose/fisiologia , Compostos de Manganês/metabolismo , Naftalenos/metabolismo , Óxidos/metabolismo , Metabolismo Secundário/fisiologia , Streptomyces/metabolismo , Antibacterianos/farmacologia , Vias Biossintéticas , Ecologia , Sedimentos Geológicos/microbiologia , Naftoquinonas/metabolismo , Oxirredução , Oxigênio/análise
6.
ISME J ; 8(5): 963-78, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24351938

RESUMO

Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member's contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development.


Assuntos
Carbono/metabolismo , Transporte de Elétrons , Geobacter/classificação , Geobacter/metabolismo , Microbiologia da Água , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Redes e Vias Metabólicas , Metais/metabolismo , Oxirredução , RNA Bacteriano/genética , RNA Ribossômico 16S/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(38): 15336-41, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003156

RESUMO

The Cedars, in coastal northern California, is an active site of peridotite serpentinization. The spring waters that emerge from this system feature very high pH, low redox potential, and low ionic concentrations, making it an exceptionally challenging environment for life. We report a multiyear, culture-independent geomicrobiological study of three springs at The Cedars that differ with respect to the nature of the groundwater feeding them. Within each spring, both geochemical properties and microbial diversity in all three domains of life remained stable over a 3-y period, with multiple samples each year. Between the three springs, however, the microbial communities showed considerable differences that were strongly correlated with the source of the serpentinizing groundwater. In the spring fed solely by deep groundwater, phylum Chloroflexi, class Clostridia, and candidate division OD1 were the major taxa with one phylotype in Euryarchaeota. Less-abundant phylotypes include several minor members from other candidate divisions and one phylotype that was an outlier of candidate division OP3. In the springs fed by the mixture of deep and shallow groundwater, organisms close to the Hydrogenophaga within Betaproteobacteria dominated and coexisted with the deep groundwater community members. The shallow groundwater community thus appears to be similar to those described in other terrestrial serpentinizing sites, whereas the deep community is distinctly different from any other previously described terrestrial serpentinizing community. These unique communities have the potential to yield important insights into the development and survival of life in these early-earth analog environments.


Assuntos
Biodiversidade , Ecossistema , Metagenoma/genética , Nascentes Naturais/química , Nascentes Naturais/microbiologia , Asbestos Serpentinas/química , Sequência de Bases , California , Chloroflexi/genética , Cianobactérias/genética , Euryarchaeota/genética , Bactérias Gram-Positivas/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Proteobactérias/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
8.
Nano Lett ; 13(6): 2407-11, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23701405

RESUMO

The study of electrical transport in biomolecular materials is critical to our fundamental understanding of physiology and to the development of practical bioelectronics applications. In this study, we investigated the electronic transport characteristics of Shewanella oneidensis MR-1 nanowires by conducting-probe atomic force microscopy (CP-AFM) and by constructing field-effect transistors (FETs) based on individual S. oneidensis nanowires. Here we show that S. oneidensis nanowires exhibit p-type, tunable electronic behavior with a field-effect mobility on the order of 10(-1) cm(2)/(V s), comparable to devices based on synthetic organic semiconductors. This study opens up opportunities to use such bacterial nanowires as a new semiconducting biomaterial for making bioelectronics and to enhance the power output of microbial fuel cells through engineering the interfaces between metallic electrodes and bacterial nanowires.


Assuntos
Nanofios , Shewanella/fisiologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
9.
Artigo em Inglês | MEDLINE | ID: mdl-23217537

RESUMO

OBJECTIVE: Bacterial biofilms play a role in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (BRONJ). The purpose of this preliminary study was to test the hypothesis that the extracellular filaments observed in biofilms associated with BRONJ contain electrically conductive nanowires. STUDY DESIGN: Bone samples of patients affected by BRONJ were evaluated for conductive nanowires by scanning electron microscopy (SEM) and conductive probe atomic force microscopy (CP-AFM). We created nanofabricated electrodes to measure electrical transport along putative nanowires. RESULTS: SEM revealed large-scale multispecies biofilms containing numerous filamentous structures throughout necrotic bone. CP-AFM analysis revealed that these structures were electrically conductive nanowires with resistivities on the order of 20 Ω·cm. Nanofabricated electrodes spaced along the nanowires confirmed their ability to transfer electrons over micron-scale lengths. CONCLUSIONS: Electrically conductive bacterial nanowires to date have been described only in environmental isolates. This study shows for the first time that these nanowires can also be found in clinically relevant biofilm-mediated diseases, such as BRONJ, and may represent an important target for therapy.


Assuntos
Biofilmes , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/microbiologia , Condutividade Elétrica , Arcada Osseodentária/microbiologia , Arcada Osseodentária/ultraestrutura , Nanofios , Idoso , Feminino , Humanos , Masculino , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade
10.
Proc Natl Acad Sci U S A ; 107(42): 18127-31, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20937892

RESUMO

Bacterial nanowires are extracellular appendages that have been suggested as pathways for electron transport in phylogenetically diverse microorganisms, including dissimilatory metal-reducing bacteria and photosynthetic cyanobacteria. However, there has been no evidence presented to demonstrate electron transport along the length of bacterial nanowires. Here we report electron transport measurements along individually addressed bacterial nanowires derived from electron-acceptor-limited cultures of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. Transport along the bacterial nanowires was independently evaluated by two techniques: (i) nanofabricated electrodes patterned on top of individual nanowires, and (ii) conducting probe atomic force microscopy at various points along a single nanowire bridging a metallic electrode and the conductive atomic force microscopy tip. The S. oneidensis MR-1 nanowires were found to be electrically conductive along micrometer-length scales with electron transport rates up to 10(9)/s at 100 mV of applied bias and a measured resistivity on the order of 1 Ω·cm. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA produce appendages that are morphologically consistent with bacterial nanowires, but were found to be nonconductive. The measurements reported here allow for bacterial nanowires to serve as a viable microbial strategy for extracellular electron transport.


Assuntos
Eletricidade , Shewanella/fisiologia , Eletrodos , Microscopia de Força Atômica , Nanofios
11.
Environ Sci Technol ; 44(7): 2721-7, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20199066

RESUMO

Microbial fuel cell (MFC) technology has enabled new insights into the mechanisms of electron transfer from dissimilatory metal reducing bacteria to a solid phase electron acceptor. Using solid electrodes as electron acceptors enables quantitative real-time measurements of electron transfer rates to these surfaces. We describe here an optically accessible, dual anode, continuous flow MFC that enables real-time microscopic imaging of anode populations as they develop from single attached cells to a mature biofilms. We used this system to characterize how differences in external resistance affect cellular electron transfer rates on a per cell basis and overall biofilm development in Shewanella oneidensis strain MR-1. When a low external resistance (100 Omega) was used, estimates of current per cell reached a maximum of 204 fA/cell (1.3 x 10(6) e(-) cell(-1) sec(-1)), while when a higher (1 MOmega) resistance was used, only 75 fA/cell (0.4 x 10(6) e(-) cell(-1) sec(-1)) was produced. The 1 MOmega anode biomass consistently developed into a mature thick biofilm with tower morphology (>50 microm thick), whereas only a thin biofilm (<5 microm thick) was observed on the 100 Omega anode. These data suggest a link between the ability of a surface to accept electrons and biofilm structure development.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes/crescimento & desenvolvimento , Elétrons , Shewanella/citologia , Shewanella/fisiologia , Biomassa , Contagem de Colônia Microbiana , Impedância Elétrica , Eletricidade , Eletroquímica , Eletrodos , Shewanella/crescimento & desenvolvimento , Shewanella/ultraestrutura , Fatores de Tempo
12.
Int J Syst Evol Microbiol ; 60(Pt 3): 546-553, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19654355

RESUMO

An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32(T), was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the Geobacteraceae-specific citrate synthase (gltA) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus Geobacter and shared 92-98 % 16S rRNA gene and 75-81 % rpoB gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Geobacter uraniireducens Rf4(T), according to 16S rRNA gene sequence similarity, strain FRC-32(T) showed a DNA-DNA relatedness value of 21 %. Cells of strain FRC-32(T) were Gram-negative, non-spore-forming, curved rods, 1.0-1.5 microm long and 0.3-0.5 microm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus Geobacter. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 degrees C and pH 6.7-7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the Geobacter group, strain FRC-32(T) conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32(T) was metabolically versatile and, unlike its closest relative, G. uraniireducens, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with fumarate as the electron acceptor. Thus, based on genotypic, phylogenetic and phenotypic differences, strain FRC-32(T) is considered to represent a novel species of the genus Geobacter, for which the name Geobacter daltonii sp. nov. is proposed. The type strain is FRC-32(T) (=DSM 22248(T)=JCM 15807(T)).


Assuntos
Compostos Férricos/metabolismo , Geobacter/classificação , Geobacter/isolamento & purificação , Hidrocarbonetos/metabolismo , Metais Pesados/metabolismo , Urânio/metabolismo , Poluentes Químicos da Água/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , Geobacter/genética , Geobacter/metabolismo , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
13.
Environ Sci Technol ; 43(24): 9519-24, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20000550

RESUMO

Anode-respiring bacteria (ARB) are able to transfer electrons contained in organic substrates to a solid electrode. The selection of ARB should depend on the anode potential, which determines the amount of energy available for bacterial growth and maintenance. In our study, we investigated how anode potential affected the microbial diversity of the biofilm community. We used a microbial electrolysis cell (MEC) containing four graphite electrodes, each at a different anode potential (E(anode) = -0.15, -0.09, +0.02, and +0.37 V vs SHE). We used wastewater-activated sludge as inoculum, acetate as substrate, and continuous-flow operation. The two electrodes at the lowest potentials showed a faster biofilm growth and produced the highest current densities, reaching up to 10.3 A/m(2) at the saturation of an amperometric curve; the electrode at the highest potential produced a maximum of 0.6 A/m(2). At low anode potentials, clone libraries showed a strong selection (92-99% of total clones) of an ARB that is 97% similar to G. sulfurreducens. At the highest anode potential, the ARB community was diverse. Cyclic voltammograms performed on each electrode suggest that the ARB grown at the lowest potentials carried out extracellular electron transport exclusively by conducting electrons through the extracellular biofilm matrix. This is supported by scanning electron micrographs showing putative bacterial nanowires and copious EPS at the lowest potentials. Non-ARB and ARB using electron shuttles in the diverse community for the highest anode potential may have insulated the ARB using a solid conductive matrix from the anode. Continuous-flow operation and the selective pressure due to low anode potentials selected for G. sulfurreducens, which are known to consume acetate efficiently and use a solid conductive matrix for electron transport.


Assuntos
Bactérias/metabolismo , Biofilmes , Respiração Celular/fisiologia , Eletroquímica , Eletrodos/microbiologia , Fontes de Energia Bioelétrica/microbiologia , Geobacter/metabolismo , Microscopia Eletrônica de Varredura
14.
Science ; 322(5899): 275-8, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18845759

RESUMO

DNA from low-biodiversity fracture water collected at 2.8-kilometer depth in a South African gold mine was sequenced and assembled into a single, complete genome. This bacterium, Candidatus Desulforudis audaxviator, composes >99.9% of the microorganisms inhabiting the fluid phase of this particular fracture. Its genome indicates a motile, sporulating, sulfate-reducing, chemoautotrophic thermophile that can fix its own nitrogen and carbon by using machinery shared with archaea. Candidatus Desulforudis audaxviator is capable of an independent life-style well suited to long-term isolation from the photosphere deep within Earth's crust and offers an example of a natural ecosystem that appears to have its biological component entirely encoded within a single genome.


Assuntos
Ecossistema , Genoma Bacteriano , Genômica/métodos , Peptococcaceae/genética , Microbiologia da Água , Amônia/metabolismo , Carbono/metabolismo , Genes Bacterianos , Ouro , Mineração , Dados de Sequência Molecular , Movimento , Oxirredução , Peptococcaceae/classificação , Peptococcaceae/crescimento & desenvolvimento , Peptococcaceae/fisiologia , Filogenia , Análise de Sequência de DNA , África do Sul , Esporos Bacterianos/fisiologia , Sulfatos/metabolismo , Temperatura
15.
Appl Environ Microbiol ; 71(12): 8773-83, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16332873

RESUMO

Alkaline, sulfidic, 54 to 60 degrees C, 4 to 53 million-year-old meteoric water emanating from a borehole intersecting quartzite-hosted fractures >3.3 km beneath the surface supported a microbial community dominated by a bacterial species affiliated with Desulfotomaculum spp. and an archaeal species related to Methanobacterium spp. The geochemical homogeneity over the 650-m length of the borehole, the lack of dividing cells, and the absence of these microorganisms in mine service water support an indigenous origin for the microbial community. The coexistence of these two microorganisms is consistent with a limiting flux of inorganic carbon and SO4(2-) in the presence of high pH, high concentrations of H2 and CH4, and minimal free energy for autotrophic methanogenesis. Sulfide isotopic compositions were highly enriched, consistent with microbial SO4(2-) reduction under hydrologic isolation. An analogous microbial couple and similar abiogenic gas chemistry have been reported recently for hydrothermal carbonate vents of the Lost City near the Mid-Atlantic Ridge (D. S. Kelly et al., Science 307:1428-1434, 2005), suggesting that these features may be common to deep subsurface habitats (continental and marine) bearing this geochemical signature. The geochemical setting and microbial communities described here are notably different from microbial ecosystems reported for shallower continental subsurface environments.


Assuntos
Desulfotomaculum/isolamento & purificação , Sedimentos Geológicos/microbiologia , Methanobacterium/isolamento & purificação , Microbiologia da Água , Desulfotomaculum/classificação , Desulfotomaculum/genética , Methanobacterium/classificação , Methanobacterium/genética , Filogenia , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...