Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(32): 6593-6604, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39086328

RESUMO

A range of heterocycles based on quinoxalines, 1,4-benzoxazines and 1,4-benzothiazines have been accessed from styrenes by reacting them with benzene-1,2-diamine, 2-aminophenol and 2-aminothiophenol respectively in micellar medium. This reaction occurring in a less explored cetylpyridinium bromide (CPB) micellar medium operates in the presence of NBS through a tandem hydrobromination-oxidation cascade, converting styrenes to phenacyl bromides. Its subsequent nucleophilic addition with aromatic 1,2-dinucleophiles and further transformations led to the formation of heterocyclic constructs. The locus of the reaction site was confirmed through NMR studies and the types of interactions between the CPB and solubilizates were established by DFT calculations.

2.
Org Biomol Chem ; 21(30): 6151-6159, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37462511

RESUMO

Oxabicyclo[n.3.1]alkene scaffolds present in a diverse range of complex natural products have been accessed by reacting 2-cycloalkenones with 1,3-cycloalkadiones in a micellar medium. This reaction occurring in a micellar confinement environment operates through a Michael addition/enolization/oxygen addition cascade to furnish highly functionalized constructs using a sustainable organic synthesis protocol. NMR analysis confirms that the locus of the solubilizates is within the palisade and stern regions of the micellar cavity.

3.
Org Biomol Chem ; 20(24): 4888-4893, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35670447

RESUMO

A novel Morita-Baylis-Hillman reaction employing electron-deficient alkenes like acrylonitrile with a wide range of aryl and aliphatic ketones using cooperative catalysis in micellar media has been delineated. This transformation executed in water under mild reaction conditions in a confined environment of micelles is aligned to the ideas of sustainable and green chemistry. The site of the reaction was established by incisive proton NMR studies in the palisade region of the micellar assembly. This study is expected to encourage the use of micellar catalysis for energetically less favorable chemical reactions.


Assuntos
Acrilonitrila , Cetonas , Catálise , Cetonas/química , Micelas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA