Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(14): e34486, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39082030

RESUMO

Elevated sodium level (Na+) poses significant threat to crop plant physio-biochemical processes, leading to impaired growth followedby decline in productivity. Addressing this challenge, requires an eco-friendly and cost-effective strategy that enhances plant salt stress tolerance capacity. In this context, the exogenous source of plant growth regulators (PGRs) proved to be an efficient approach. Of various PGRs, salicylic acid (SA) is an emerging signaling molecule that boosts plant stress endurance mechanism. This study investigates SA-mediated salt stress tolerance in maize (Zea mays L.) seedlings, by examining morpho-physiological and biochemical traits. Maize seedlings were subjected to varying levels of salt stress (0, 25, 50, 75, 100, and 150 mM NaCl) for a period of 10-days. The results revealed that, a substantial decline in germination percentage, shoot and root length, plant biomass, vigour index, and various other physiological parameters under salt stress causing concentrations. Conversely, salt stress increased oxidative stress indicators, including hydrogen peroxide (H2O2) and malondialdehyde (MDA), osmolytes and elemental concentrations as well as antioxident enzymes (SOD, CAT, POX, APX, GR, AsA). However, the exogenous supplementation of SA at 0.1 mM significantly restored most morpho-physiological attributes in maize under salt stress conditions. This suggests that SA actively triggers the ascorbate-glutathione (AsA-GSH) pathway and other key enzymes, leading to sodium extrusion and improving antioxidant defense in maize seedlings. This finding provides valuable insights for maize farmers that employing SA could lead to improved maize production in saline soils.

2.
Sci Rep ; 14(1): 16351, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013994

RESUMO

To sustainably increase wheat yield to meet the growing world population's food demand in the face of climate change, Conservation Agriculture (CA) is a promising approach. Still, there is a lack of genomic studies investigating the genetic basis of crop adaptation to CA. To dissect the genetic architecture of 19 morpho-physiological traits that could be involved in the enhanced adaptation and performance of genotypes under CA, we performed GWAS to identify MTAs under four contrasting production regimes viz., conventional tillage timely sown (CTTS), conservation agriculture timely sown (CATS), conventional tillage late sown (CTLS) and conservation agriculture late sown (CALS) using an association panel of 183 advanced wheat breeding lines along with 5 checks. Traits like Phi2 (Quantum yield of photosystem II; CATS:0.37, CALS: 0.31), RC (Relative chlorophyll content; CATS:55.51, CALS: 54.47) and PS1 (Active photosystem I centers; CATS:2.45, CALS: 2.23) have higher mean values in CA compared to CT under both sowing times. GWAS identified 80 MTAs for the studied traits across four production environments. The phenotypic variation explained (PVE) by these QTNs ranged from 2.15 to 40.22%. Gene annotation provided highly informative SNPs associated with Phi2, NPQ (Quantum yield of non-photochemical quenching), PS1, and RC which were linked with genes that play crucial roles in the physiological adaptation under both CA and CT. A highly significant SNP AX94651261 (9.43% PVE) was identified to be associated with Phi2, while two SNP markers AX94730536 (30.90% PVE) and AX94683305 (16.99% PVE) were associated with NPQ. Identified QTNs upon validation can be used in marker-assisted breeding programs to develop CA adaptive genotypes.


Assuntos
Adaptação Fisiológica , Agricultura , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Agricultura/métodos , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal/métodos , Fenótipo , Genoma de Planta , Genótipo , Pão
3.
Mol Biol Rep ; 51(1): 307, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365995

RESUMO

BACKGROUND: Sweet corn is gaining tremendous demand worldwide due to urbanization and changing consumer preferences. However, genetic improvement in this crop is being limited by narrow genetic base and other undesirable agronomic traits that hinder the development of superior cultivars. The main requirement in this direction is the development of potentially promising parental lines. One of the most important strategies in this direction is to develop such lines from hybrid-oriented source germplasm which may provide diverse base material with desirable biochemical and agro-morphological attributes. METHODS AND RESULTS: The study was undertaken to carry out morphological and biochemical evaluation of 80 early generation inbred lines (S2) of sweet corn that were developed from a cross between two single cross sweet corn hybrids (Mithas and Sugar-75). Moreover, validation of favourable recessive alleles for sugar content was carried out using SSR markers. The 80 sweet corn inbreds evaluated for phenotypic characterization showed wide range of variability with respect to different traits studied. The highest content of total carotenoids was found in the inbred S27 (34 µg g-1) followed by the inbred S65 (31.1 µg g-1). The highest content for total sugars was found in S60 (8.54%) followed by S14 (8.34%). Molecular characterization of 80 inbred lines led to the identification of seven inbreds viz., S21, S28, S47, S48, S49, S53, and S54, carrying the alleles specific to the sugary gene (su1) with respect to the markers umc2061 and bnlg1937. Comparing the results of scatter plot for biochemical and morphological traits, it was revealed that inbreds S9, S23, S27 and S36 contain high levels of total sugars and total carotenoids along with moderate values for amylose and yield attributing traits. CONCLUSION: The inbred lines identified with desirable biochemical and agro-morphological attributes in the study could be utilized as source of favourable alleles in sweet corn breeding programmes after further validation for disease resistance and other agronomic traits. Consequently, the study will not only enhance the genetic base of sweet corn germplasm but also has the potential to develop high-yielding hybrids with improved quality. The inbreds possessing su1 gene on the basis of umc2061 and bnlg1937 markers were also found to possess high sugar content. This indicates the potential of these lines as desirable candidates for breeding programs aimed at improving sweet corn yield and quality. These findings also demonstrate the effectiveness of the molecular markers in facilitating marker-assisted selection for important traits in sweet corn breeding.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Fenótipo , Verduras , Açúcares , Carotenoides
5.
Plants (Basel) ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765402

RESUMO

Wheat is highly affected by stripe rust disease, particularly under cooler environments, and the losses can reach up to 100 percent depending on the intensity of infection and the susceptibility of the genotype. The most effective method to manage this disease is the use of resistant varieties. In the present study, 192 wheat genotypes were evaluated for stripe rust resistance under field conditions and also in a laboratory using molecular markers. These lines included pre-breeding germplasm developed for rust resistance and some high-yielding commercially grown wheat varieties. Out of 192 genotypes, 53 were found to be resistant, and 29 showed moderate resistance reaction under field conditions, whereas the remaining genotypes were all either moderately susceptible or susceptible. Under controlled conditions, out of 109 genotypes, only 12 were found to be resistant to all the six virulent/pathogenic pathotypes. Additionally, a selection of 97 genotypes were found resistant in field screening and were subjected to molecular validation using the markers linked to major R-genes, viz., Yr5, Yr10, Yr15 and Yr17. Nine genotypes possessed the Yr5 gene, twelve had the Yr10 gene, fourteen had the Yr15 gene and thirty-two had the Yr17 gene. The resistance genes studied in the current study are effective in conferring resistance against stripe rust disease. The genotypes identified as resistant under both field and controlled conditions can be used as sources in stripe rust resistance breeding programs.

6.
Funct Integr Genomics ; 23(4): 297, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700096

RESUMO

Analysis of natural diversity in wild/cultivated plants can be used to understand the genetic basis for plant breeding programs. Recent advancements in DNA sequencing have expanded the possibilities for genetically altering essential features. There have been several recently disclosed statistical genetic methods for discovering the genes impacting target qualities. One of these useful methods is the genome-wide association study (GWAS), which effectively identifies candidate genes for a variety of plant properties by examining the relationship between a molecular marker (such as SNP) and a target trait. Conventional QTL mapping with highly structured populations has major limitations. The limited number of recombination events results in poor resolution for quantitative traits. Only two alleles at any given locus can be studied simultaneously. Conventional mapping approach fails to work in perennial plants and vegetatively propagated crops. These limitations are sidestepped by association mapping or GWAS. The flexibility of GWAS comes from the fact that the individuals being examined need not be linked to one another, allowing for the use of all meiotic and recombination events to increase resolution. Phenotyping, genotyping, population structure analysis, kinship analysis, and marker-trait association analysis are the fundamental phases of GWAS. With the rapid development of sequencing technologies and computational methods, GWAS is becoming a potent tool for identifying the natural variations that underlie complex characteristics in crops. The use of high-throughput sequencing technologies along with genotyping approaches like genotyping-by-sequencing (GBS) and restriction site associated DNA (RAD) sequencing may be highly useful in fast-forward mapping approach like GWAS. Breeders may use GWAS to quickly unravel the genomes through QTL and association mapping by taking advantage of natural variances. The drawbacks of conventional linkage mapping can be successfully overcome with the use of high-resolution mapping and the inclusion of multiple alleles in GWAS.


Assuntos
Estudo de Associação Genômica Ampla , Árvores , Humanos , Melhoramento Vegetal , Mapeamento Cromossômico , Alelos , Produtos Agrícolas
8.
J Cancer ; 14(3): 490-504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860921

RESUMO

Cancer is the major challenge across world and the adenocarcinoma of prostate malignancy is the second most prevalent male cancer. Various medicinal plants are used for the treatment and management of various cancers. Matricaria chamomilla L., is one of the extensively used Unani medicament for the treatment of various type of diseases. In the current study we evaluated most of the parameters prescribed for drug standardization using pharmacognostic approaches. The 2,2 Diphenyl-1-picryl hydrazyl (DPPH) method was utilized for the analysis of antioxidant activity in the flower extracts of M. chamomilla. Moreover, we analyzed the antioxidant and cytotoxic activity of M. chamomilla (Gul-e Babuna) through in-vitro method. DPPH (2,2-diphenyl-1-picryl-hydrazl-hydrate) method was utilized for the analysis of antioxidant activity in the flower extracts of M. chamomilla. CFU and wound healing assay were performed to determine the anti-cancer activity. The results demonstrated that various extracts of M. chamomilla fulfilled most of the parameters of drug standardization and contained good antioxidant and anticancer activities. The ethyl acetate showed higher anticancer activity followed by aqueous, hydroalcoholic, petroleum benzene and methanol by CFU method. Also, the wound healing assay demonstrated that ethyl acetate extract has more significant effect followed by methanol and petroleum benzene extract on prostate cancer cell line (C4-2). The current study concluded that the extract of M. chamomilla flowers could act as good source of natural anti-cancer compounds.

9.
Mol Biol Rep ; 50(4): 2975-2990, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36653731

RESUMO

AIM: Plant metal tolerance proteins (MTPs) are plant membrane divalent cation transporters that specifically contribute to heavy metal stress resistance and mineral uptake. However, little is known about this family's molecular behaviors and biological activities in soybean. METHODS AND RESULTS: A total of 20 potential MTP candidate genes were identified and studied in the soybean genome for phylogenetic relationships, chromosomal distributions, gene structures, gene ontology, cis-elements, and previous gene expression. Furthermore, the expression of MTPs has been investigated under different heavy metals treatments. All identified soybean MTPs (GmaMTPs) contain a cation efflux domain or a ZT dimer and are further divided into three primary cation diffusion facilitator (CDF) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. The developmental analysis reveals that segmental duplication contributes to the GmaMTP family's expansion. Tissue-specific expression profiling revealed comparative expression profiling in similar groups, although gene expression differed between groups. GmaMTP genes displayed biased responses in either plant leaves or roots when treated with heavy metal. In the leaves and roots, nine and ten GmaMTPs responded to at least one metal ion treatment. Furthermore, in most heavy metal treatments, GmaMTP1.1, GmaMTP1.2, GmaMTP3.1, GmaMTP3.2, GmaMTP4.1, and GmaMTP4.3 exhibited significant expression responses. CONCLUSION: Our findings provided insight into the evolution of MTPs in soybean. Overall, our findings shed light on the evolution of the MTP gene family in soybean and pave the path for further functional characterization of this gene family.


Assuntos
Glycine max , Metais Pesados , Glycine max/genética , Glycine max/metabolismo , Filogenia , Sequência de Aminoácidos , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética
10.
Mol Biol Rep ; 50(4): 3787-3814, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36692674

RESUMO

Biotic stress is a critical factor limiting soybean growth and development. Soybean responses to biotic stresses such as insects, nematodes, fungal, bacterial, and viral pathogens are governed by complex regulatory and defense mechanisms. Next-generation sequencing has availed research techniques and strategies in genomics and post-genomics. This review summarizes the available information on marker resources, quantitative trait loci, and marker-trait associations involved in regulating biotic stress responses in soybean. We discuss the differential expression of related genes and proteins reported in different transcriptomics and proteomics studies and the role of signaling pathways and metabolites reported in metabolomic studies. Recent advances in omics technologies offer opportunities to reshape and improve biotic stress resistance in soybean by altering gene regulation and/or other regulatory networks. We suggest using 'integrated omics' to precisely understand how soybean responds to different biotic stresses. We also discuss the potential challenges of integrating multi-omics for the functional analysis of genes and their regulatory networks and the development of biotic stress-resistant cultivars. This review will help direct soybean breeding programs to develop resistance against different biotic stresses.


Assuntos
Glycine max , Multiômica , Glycine max/genética , Glycine max/metabolismo , Melhoramento Vegetal , Genômica/métodos , Estresse Fisiológico/genética
11.
Mol Biol Rep ; 50(2): 1603-1615, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528661

RESUMO

BACKGROUND: Embelia ribes Burm f. (Primulaceae) is a medicinal and vulnerable woody liana distributed throughout India. Embelin, a well-recognized active phytoconstituents in berries, is commonly used in ayurvedic formulations. Due to over-exploitation, the status of the plant is vulnerable. Previous studies on this species mainly focused on its phytochemical analysis, which led to overexploitation and loss of the germplasm. METHODS AND RESULTS: In the present study, 20 RAPD and 18 ISSR markers were employed to assess genetic divergence in 40 genotypes of E. ribes collected from different parts of the Western Ghats of India. In RAPD analysis, all 40 accessions with 20 RAPD primers amplified 282 fragments, with 83.91% average polymorphism and with an average of 14.10 bands per primer. The size of amplicons varied from 200 to 2500 bp. While, ISSR primers produced 203 fragments of which 161 were polymorphic with an average of 11.28 bands per primer with 73.25% average polymorphism. The size of amplicons ranges from 200 to 2500 bp. RAPD and ISSR markers were also assessed by calculating polymorphic information content (PIC) to discriminate the genotypes; the average PIC value for RAPD, ISSR, and combined RAPD + ISSR markers obtained was more than 0.50 suggesting the informativeness of markers. UPGMA analysis based on Jaccard's similarity coefficient for RAPD, ISSR, and RAPD + ISSR data reveals that 40 accessions of E. ribes were depicted in four clusters. The clustering pattern of all individuals in PCoA analysis agreed with the UPGMA dendrograms, which further confirms the genetic relationships explained by cluster analysis. AMOVA analysis of RAPD, ISSR, and combined marker system revealed variation within the population, ranging from 41 to 44%, and among the population, it ranged from 56 to 59%. CONCLUSION: The present study provides an optimized method for evaluating the genetic diversity of Embelia ribes using RAPD and ISSR markers which are useful for further sustainable utilization and conservation of natural populations in the Western Ghats of India.


Assuntos
DNA de Plantas , Embelia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Humanos , DNA , Embelia/genética , Embelia/metabolismo , Marcadores Genéticos/genética , Variação Genética/genética , Índia , Repetições de Microssatélites/genética , Filogenia , Polimorfismo Genético/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , DNA de Plantas/genética
12.
Front Genet ; 13: 939182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452161

RESUMO

Soybean is one of the largest sources of protein and oil in the world and is also considered a "super crop" due to several industrial advantages. However, enhanced acreage and adoption of monoculture practices rendered the crop vulnerable to several diseases. Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most prevalent diseases adversely affecting soybean production globally. Deployment of genetic resistance is the most sustainable approach for avoiding yield losses due to this disease. PRSR resistance is complex in nature and difficult to address by conventional breeding alone. Genetic mapping through a cost-effective sequencing platform facilitates identification of candidate genes and associated molecular markers for genetic improvement against PRSR. Furthermore, with the help of novel genomic approaches, identification and functional characterization of Rps (resistance to Phytophthora sojae) have also progressed in the recent past, and more than 30 Rps genes imparting complete resistance to different PRSR pathotypes have been reported. In addition, many genomic regions imparting partial resistance have also been identified. Furthermore, the adoption of emerging approaches like genome editing, genomic-assisted breeding, and genomic selection can assist in the functional characterization of novel genes and their rapid introgression for PRSR resistance. Hence, in the near future, soybean growers will likely witness an increase in production by adopting PRSR-resistant cultivars. This review highlights the progress made in deciphering the genetic architecture of PRSR resistance, genomic advances, and future perspectives for the deployment of PRSR resistance in soybean for the sustainable management of PRSR disease.

13.
Front Plant Sci ; 13: 1004331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340407

RESUMO

Bacterial adhesion potential constitutes the transition of bacteria from the planktonic to the static phase by promoting biofilm formation, which plays a significant role in plant-microbial interaction in the agriculture industry. In present study, the adhesion potential of five soil-borne bacterial strains belonging to different genera was studied. All bacterial strains were capable of forming colonies and biofilms of different levels of firmness on polystyrene. Significant variation was observed in hydrophobicity and motility assays. Among the five bacterial strains (SH-6, SH-8, SH-9, SH-10, and SH-19), SH-19 had a strong hydrophobic force, while SH-10 showed the most hydrophilic property. SH-6 showed great variability in motility; SH-8 had a swimming diffusion diameter of 70 mm, which was three times higher than that of SH-19. In the motility assay, SH-9 and SH-10 showed diffusion diameters of approximately 22 mm and 55 mm, respectively. Furthermore, among the five strains, four are predominately electron donors and one is electron acceptors. Overall, positive correlation was observed among Lewis acid base properties, hydrophobicity, and biofilm forming ability. However, no correlation of motility with bacterial adhesion could be found in present experimental work. Scanning electron microscopy images confirmed the adhesion potential and biofilm ability within extra polymeric substances. Research on the role of adhesion in biofilm formation of bacteria isolated from plants is potentially conducive for developing strategies such as plant-microbial interaction to mitigate the abiotic stress.

14.
Front Plant Sci ; 13: 965878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212378

RESUMO

High-throughput sequencing technologies (HSTs) have revolutionized crop breeding. The advent of these technologies has enabled the identification of beneficial quantitative trait loci (QTL), genes, and alleles for crop improvement. Climate change have made a significant effect on the global maize yield. To date, the well-known omic approaches such as genomics, transcriptomics, proteomics, and metabolomics are being incorporated in maize breeding studies. These approaches have identified novel biological markers that are being utilized for maize improvement against various abiotic stresses. This review discusses the current information on the morpho-physiological and molecular mechanism of abiotic stress tolerance in maize. The utilization of omics approaches to improve abiotic stress tolerance in maize is highlighted. As compared to single approach, the integration of multi-omics offers a great potential in addressing the challenges of abiotic stresses of maize productivity.

15.
Theor Appl Genet ; 135(10): 3571-3582, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36087141

RESUMO

KEY MESSAGE: Pleiotropic and epistatic quantitative disease resistance loci (QDRL) were identified for soybean partial resistance to different isolates of Pythium irregulare and Pythium sylvaticum. Pythium root rot is an important seedling disease of soybean [Glycine max (L.) Merr.], a crop grown worldwide for protein and oil content. Pythium irregulare and P. sylvaticum are two of the most prevalent and aggressive Pythium species in soybean producing regions in the North Central U.S. Few studies have been conducted to identify soybean resistance for management against these two pathogens. In this study, a mapping population (derived from E13390 x E13901) with 228 F4:5 recombinant inbred lines were screened against P. irregulare isolate MISO 11-6 and P. sylvaticum isolate C-MISO2-2-30 for QDRL mapping. Correlation analysis indicated significant positive correlations between soybean responses to the two pathogens, and a pleiotropic QDRL (qPirr16.1) was identified. Further investigation found that the qPirr16.1 imparts dominant resistance against P. irregulare, but recessive resistance against P. sylvaticum. In addition, two QDRL, qPsyl15.1, and qPsyl18.1 were identified for partial resistance to P. sylvaticum. Further analysis revealed epistatic interactions between qPirr16.1 and qPsyl15.1 for RRW and DRX, whereas qPsyl18.1 contributed resistance to RSE. Marker-assisted resistance spectrum analysis using F6:7 progeny lines verified the resistance of qPirr16.1 against four additional P. irregulare isolates. Intriguingly, although the epistatic interaction of qPirr16.1 and qPsyl15.1 can be confirmed using two additional isolates of P. sylvaticum, the interaction appears to be suppressed for the other two P. sylvaticum isolates. An 'epistatic gene-for-gene' model was proposed to explain the isolate-specific epistatic interactions. The integration of the QDRL into elite soybean lines containing all the desirable alleles has been initiated.


Assuntos
Resistência à Doença , Pythium , Resistência à Doença/genética , Doenças das Plantas/genética , Plântula , Glycine max/genética
16.
Plast Reconstr Surg Glob Open ; 10(9): e4555, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36168609

RESUMO

Polydactyly is defined as an extra finger or toe that is present at birth. It is a congenital anomaly that can manifest as a single disorder or as a component of a syndrome. Treatment can be conservative or operative depending on the anticipated function of the extra digit. In this report, we describe a case of a bifid 5th digit on the right hand. The aim of this report was to report a new variant of type IIIB described by Duran (2015). This will possibly lead to the modification of the current classifications, which will improve the diagnosis and treatment of patients.

17.
J Fungi (Basel) ; 8(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36012787

RESUMO

Powdery mildew is an omnipresent disease that reduces the yield and quality of pea crops (Pisum sativum L.). To examine the powdery mildew pathogen's morphological, molecular, and genetic diversity, we collected samples of powdery mildew-affected pea crops from ten distinct locations in the Nilgiris district of Tamil Nadu, India. The pathogen Erysiphe pisi was identified morphologically based on anamorphic characters. Molecular identification of E. pisi isolates was befitted by targeting the internal transcribed spacer (ITS) region of rDNA and specific primers of powdery mildew fungi. The genetic variation between ten different E. pisi isolates collected from topographically distinct mountainous areas was studied using random amplified polymorphic (RAPD). Based on its morphological characteristics, the powdery mildew fungus presented high similarities to E. pisi. Molecular characterization of the ITS rDNA of E. pisi produced 650 bp nucleotides, PMITS (powdery mildew-internal transcribed region) primers produced 700 bp nucleotides, and an Erysiphe specific ITS primer pair amplified and synthesized 560 bp nucleotides. According to the findings, the collected E. pisi strains exhibited a low level of genetic diversity and only a slight differential in virulence on the host. In the study, E. pisi isolates from Anumapuram, Emerald Valley, Indira Nagar, and Thuneri showed a greater disease incidence in the natural field conditions and shared the same genetic lineage with other isolates in UPGMA hierarchical cluster analysis based on RAPD markers. There was no evidence of a link between the occurrence of the disease and these grouped populations.

18.
Mol Biol Rep ; 49(12): 11443-11467, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36002653

RESUMO

Crop plants are prone to several yield-reducing biotic and abiotic stresses. The crop yield reductions due to these stresses need addressing to maintain an adequate balance between the increasing world population and food production to avoid food scarcities in the future. It is impossible to increase the area under food crops proportionately to meet the rising food demand. In such an adverse scenario overcoming the biotic and abiotic stresses through biotechnological interventions may serve as a boon to help meet the globe's food requirements. Under the current genomic era, the wide availability of genomic resources and genome editing technologies such as Transcription Activator-Like Effector Nucleases (TALENs), Zinc Finger Nucleases (ZFNs), and Clustered-Regularly Interspaced Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas) has widened the scope of overcoming these stresses for several food crops. These techniques have made gene editing more manageable and accessible with changes at the embryo level by adding or deleting DNA sequences of the target gene(s) from the genome. The CRISPR construct consists of a single guide RNA having complementarity with the nucleotide fragments of the target gene sequence, accompanied by a protospacer adjacent motif. The target sequence in the organism's genome is then cleaved by the Cas9 endonuclease for obtaining a desired trait of interest. The current review describes the components, mechanisms, and types of CRISPR/Cas techniques and how this technology has helped to functionally characterize genes associated with various biotic and abiotic stresses in a target organism. This review also summarizes the application of CRISPR/Cas technology targeting these stresses in crops through knocking down/out of associated genes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Plantas Geneticamente Modificadas/genética , Genoma de Planta/genética , Produtos Agrícolas/genética , Estresse Fisiológico/genética
19.
Plants (Basel) ; 11(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807630

RESUMO

Maize is the third most common cereal crop worldwide, after rice and wheat, and plays a vital role in preventing global hunger crises. Approximately 50% of global crop yields are reduced by drought stress. Bacteria as biostimulants for biopriming can improve yield and enhance sustainable food production. Further, seed biopriming stimulates plant defense mechanisms. In this study, we isolated bacteria from the rhizosphere of Artemisia plants from Pohang beach, Daegu, South Korea. Twenty-three isolates were isolated and screened for growth promoting potential. Among them, bacterial isolate SH-6 was selected based on maximum induced tolerance to polyethylene glycol-simulated drought. SH-6 showed ABA concentration = 1.06 ± 0.04 ng/mL, phosphate solubilizing index = 3.7, and sucrose concentration = 0.51 ± 0.13 mg/mL. The novel isolate SH-6 markedly enhanced maize seedling tolerance to oxidative stress owing to the presence of superoxide dismutase, catalase, and ascorbate peroxidase activities in the culture media. Additionally, we quantified and standardized the biopriming effect of SH-6 on maize seeds. SH-6 significantly increased maize seedling drought tolerance by up to 20%, resulting in 80% germination potential. We concluded that the novel bacterium isolate SH-6 (gene accession number (OM757882) is a biostimulant that can improve germination performance under drought stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA