Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Cell Physiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651687

RESUMO

Atherosclerosis remains a leading cause of cardiovascular disease (CVD) globally, with the complex interplay of inflammation and lipid metabolism at its core. Recent evidence suggests a role of B cells in the pathogenesis of atherosclerosis; however, this relationship remains poorly understood, particularly in the context of HIV. We review the multifaceted functions of B cells in atherosclerosis, with a specific focus on HIV. Unique to atherosclerosis is the pivotal role of natural antibodies, particularly those targeting oxidized epitopes abundant in modified lipoproteins and cellular debris. B cells can exert control over cellular immune responses within atherosclerotic arteries through antigen presentation, chemokine production, cytokine production, and cell-cell interactions, actively participating in local and systemic immune responses. We explore how HIV, characterized by chronic immune activation and dysregulation, influences B cells in the context of atherosclerosis, potentially exacerbating CVD risk in persons with HIV. By examining the proatherogenic and antiatherogenic properties of B cells, we aim to deepen our understanding of how B cells influence atherosclerotic plaque development, especially within the framework of HIV. This research provides a foundation for novel B cell-targeted interventions, with the potential to mitigate inflammation-driven cardiovascular events, offering new perspectives on CVD risk management in PLWH.

2.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559150

RESUMO

Chronic systemic inflammation contributes to a substantially elevated risk of myocardial infarction in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis that contribute to cardiovascular disease. Our objective was to study the effects of plasma from PLWH on endothelial cell (EC) function, with the hypothesis that cytokines and chemokines are major drivers of EC activation. We first broadly phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in adipose tissue in the subcutaneous adipose tissue of 59 PLWH using single cell transcriptomic analysis. We used CellChat to predict cell-cell interactions between ECs and other cells in the adipose tissue and Spearman correlation to measure the association between ECs and plasma cytokines. Finally, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk sequencing to study the direct effects ex-vivo. We observed that arterial and capillary ECs expressed higher interferon and tumor necrosis factor (TNF) receptors. Venous ECs had more interleukin (IL)-1R1 and ACKR1 receptors, and VSMCs had high significant IL-6R expression. CellChat predicted ligand-receptor interactions between adipose tissue immune cells as senders and capillary ECs as recipients in TNF-TNFRSF1A/B interactions. Chemokines expressed largely by capillary ECs were predicted to bind ACKR1 receptors on venous ECs. Beyond the adipose tissue, the proportion of venous ECs and VSMCs were positively plasma IL-6. In ex-vivo experiments, HAECs cultured with plasma-conditioned media from PLWH expressed transcripts that enriched for the TNF-α and reactive oxidative phosphorylation pathways. In conclusion, ECs demonstrate heterogeneity in cytokine and chemokine receptor expression. Further research is needed to fully elucidate the role of cytokines and chemokines in EC dysfunction and to develop effective therapeutic strategies.

3.
Laryngoscope ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450771

RESUMO

OBJECTIVES: Recent immunologic study of the adaptive immune repertoire in the subglottic airway demonstrated high-frequency T cell clones that do not overlap between individuals. However, the anatomic distribution and antigenic target of the T cell repertoire in the proximal airway mucosa remain unresolved. METHODS: Single-cell RNA sequencing of matched scar and unaffected mucosa from idiopathic subglottic stenosis patients (iSGS, n = 32) was performed and compared with airway mucosa from healthy controls (n = 10). T cell receptor (TCR) sequences were interrogated via similarity network analysis to explore antigenic targets using the published algorithm: Grouping of Lymphocyte Interactions by Paratope Hotspots (GLIPH2). RESULTS: The mucosal T cell repertoire in healthy control airways consisted of highly expressed T cell clones conserved across anatomic subsites (trachea, bronchi, bronchioles, and lung). In iSGS, high-frequency clones were equally represented in both scar and adjacent non-scar tissue. Significant differences in repertoire structure between iSGS scar and unaffected mucosa was observed, driven by unique low-frequency clones. GLIPH2 results suggest low-frequency clones share targets between multiple iSGS patients. CONCLUSION: Healthy airway mucosa has a highly conserved T cell repertoire across multiple anatomic subsites. Similarly, iSGS patients have highly expressed T cell clones present in both scar and unaffected mucosa. iSGS airway scar possesses an abundance of less highly expanded clones with predicted antigen targets shared between patients. Interrogation of these shared motifs suggests abundant adaptive immunity to viral targets in iSGS airway scar. These results provide insight into disease pathogenesis and illuminate new treatment strategies in iSGS. LEVEL OF EVIDENCE: Level NA Laryngoscope, 2024.

4.
J Cell Physiol ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462753

RESUMO

While some established undergraduate summer programs are effective across many institutions, these programs may only be available to some principal investigators or may not fully address the diverse needs of incoming undergraduates. This article outlines a 10-week science, technology, engineering, mathematics, and medicine (STEMM) education program designed to prepare undergraduate students for graduate school through a unique model incorporating mentoring dyads and triads, cultural exchanges, and diverse activities while emphasizing critical thinking, research skills, and cultural sensitivity. Specifically, we offer a straightforward and adaptable guide that we have used for mentoring undergraduate students in a laboratory focused on mitochondria and microscopy, but which may be customized for other disciplines. Key components include self-guided projects, journal clubs, various weekly activities such as mindfulness training and laboratory techniques, and a focus on individual and cultural expression. Beyond this unique format, this 10-week program also seeks to offer an intensive research program that emulates graduate-level experiences, offering an immersive environment for personal and professional development, which has led to numerous achievements for past students, including publications and award-winning posters.

5.
J Cell Physiol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457273

RESUMO

A popular preprint server, bioRxiv, is important as a tool for increased visibility for life science research. If used properly, however, bioRxiv can also be an important tool for training, as it may expose trainees (degree-seeking students undertaking research or internships directly related to their field of study) to the peer review process. Here, we offer a comprehensive guide to using bioRxiv as a training tool, as well as offer suggestions for improvements in bioRxiv, including confusion that may be caused by bioRxiv articles appearing on PubMed.

6.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405793

RESUMO

Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) is a rare but life-threatening cutaneous drug reaction mediated by human leukocyte antigen (HLA) class I-restricted CD8+ T-cells. To obtain an unbiased assessment of SJS/TEN cellular immunopathogenesis, we performed single-cell (sc) transcriptome, surface proteome, and TCR sequencing on unaffected skin, affected skin, and blister fluid from 17 SJS/TEN patients. From 119,784 total cells, we identified 16 scRNA-defined subsets, confirmed by subset-defining surface protein expression. Keratinocytes upregulated HLA and IFN-response genes in the affected skin. Cytotoxic CD8+ T-cell subpopulations of expanded and unexpanded TCRαß clonotypes were shared in affected skin and blister fluid but absent or unexpanded in SJS/TEN unaffected skin. SJS/TEN blister fluid is a rich reservoir of oligoclonal CD8+ T-cells with an effector phenotype driving SJS/TEN pathogenesis. This multiomic database will act as the basis to define antigen-reactivity, HLA restriction, and signatures of drug-antigen-reactive T-cell clonotypes at a tissue level.

7.
Am J Physiol Heart Circ Physiol ; 326(3): H786-H796, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38276949

RESUMO

Diversity, equity, inclusion, and accessibility (DEIA) efforts are increasingly recognized as critical for the success of academic institutions. These efforts are facilitated mainly through the formation of dedicated DEIA committees. DEIA committees enhance professional development and create a more inclusive environment, which benefits all members of the institution. Although leadership and faculty membership have recognized the importance and necessity of DEIA, the roles of DEIA committees may be more ambiguous. Although leadership and faculty may seek to support DEIA at their institutions, they may not always fully understand the necessity of these committees or how to successfully create a committee, foster and promote its success, and sustain its impact. Thus, here, we offer a background rationale and guide for strategically setting up DEIA committees for success and impact within an academic institution with applicability to scientific societies.


Assuntos
Diversidade, Equidade, Inclusão , Liderança
8.
Laryngoscope ; 134(4): 1757-1764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37787469

RESUMO

OBJECTIVES: Recent translational scientific efforts in subglottic stenosis (SGS) support a disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. Given the observed immune cell infiltrate in SGS, we sought to test the hypothesis that SGS cases possessed a low diversity (highly clonal) adaptive immune response when compared with healthy controls. METHODS: Single cell RNA sequencing (scRNA-seq) of subglottic mucosal scar in iSGS (n = 24), iLTS (n = 8), and healthy controls (n = 7) was performed. T cell receptor (TCR) sequences were extracted, analyzed, and used to construct repertoire structure, compare diversity, interrogate overlap, and define antigenic targets using the Immunarch bioinformatics pipeline. RESULTS: The proximal airway mucosa in health and disease are equally diverse via Hill framework quantitation (iSGS vs. iLTS vs. Control, p > 0.05). Repertoires do not significantly overlap between individuals (Morisita <0.02). Among iSGS patients, clonality of the TCR repertoire is driven by CD8+ T cells, and iSGS patients possess numerous TCRs targeting viral and intercellular pathogens. High frequency clonotypes do not map to known targets in public datasets. CONCLUSION: SGS cases do not possess a lower diversity adaptive immune infiltrate when compared with healthy controls. Interestingly, the TCR repertoire in both health and disease contains a restricted number of high frequency clonotypes that do not significantly overlap between individuals. The target of the high frequency clonotypes in health and disease remain unresolved. LEVEL OF EVIDENCE: NA Laryngoscope, 134:1757-1764, 2024.


Assuntos
Laringoestenose , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD8-Positivos
9.
Hypertension ; 81(3): 516-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37675576

RESUMO

BACKGROUND: The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans. METHODS: Salt sensitivity was assessed in 19 hypertensive subjects using an inpatient salt loading and depletion protocol. Isolevuglandin-adduct accumulation in APCs was analyzed using flow cytometry. Gene expression in APCs was analyzed using cellular indexing of transcriptomes and epitopes by sequencing analysis of blood mononuclear cells. Plasma and urine EETs were measured using liquid chromatography-mass spectrometry. RESULTS: Baseline isolevuglandin+ APCs correlated with higher salt-sensitivity index. Isolevuglandin+ APCs significantly decreased from salt loading to depletion with an increasing salt-sensitivity index. We observed that human APCs express the epithelial sodium channel δ subunit, SGK1 (salt-sensing kinase serum/glucocorticoid kinase 1), and cytochrome P450 2S1. We found a direct correlation between baseline urinary 14,15 EET and salt-sensitivity index, whereas changes in urinary 14,15 EET negatively correlated with isolevuglandin+ monocytes from salt loading to depletion. Coincubation with 14,15 EET inhibited high-salt-induced increase in isolevuglandin+ APC. CONCLUSIONS: Isolevuglandin formation in APCs responds to acute changes in salt intake in salt-sensitive but not salt-resistant people with hypertension, and this may be regulated by renal 14,15 EET. Baseline levels of isolevuglandin+ APCs or urinary 14,15 EET may provide diagnostic tools for salt sensitivity without a protocol of salt loading.


Assuntos
Hipertensão , Lipídeos , Cloreto de Sódio na Dieta , Humanos , Cloreto de Sódio na Dieta/metabolismo , Canais Epiteliais de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Eicosanoides , Pressão Sanguínea/fisiologia
10.
Mol Cell ; 83(21): 3766-3772, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922871

RESUMO

Building a diverse laboratory that is equitable is critical for the retention of talent and the growth of trainees professionally and personally. Here, we outline several strategies including enhancing understanding of cultural competency and humility, establishing laboratory values, and developing equitable laboratory structures to create an inclusive laboratory environment to enable trainees to achieve their highest success.


Assuntos
Diversidade, Equidade, Inclusão , Laboratórios
11.
Front Immunol ; 14: 1152003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711619

RESUMO

Introduction: Subcutaneous adipose tissue (SAT) is a critical regulator of systemic metabolic homeostasis. Persons with HIV (PWH) have an increased risk of metabolic diseases and significant alterations in the SAT immune environment compared with the general population. Methods: We generated a comprehensive single-cell multi-omic SAT atlas to characterize cellular compositional and transcriptional changes in 59 PWH across a spectrum of metabolic health. Results: Glucose intolerance was associated with increased lipid-associated macrophages, CD4+ and CD8+ T effector memory cells, and decreased perivascular macrophages. We observed a coordinated intercellular regulatory program which enriched for genes related to inflammation and lipid-processing across multiple cell types as glucose intolerance increased. Increased CD4+ effector memory tissue-resident cells most strongly associated with altered expression of adipocyte genes critical for lipid metabolism and cellular regulation. Intercellular communication analysis demonstrated enhanced pro-inflammatory and pro-fibrotic signaling between immune cells and stromal cells in PWH with glucose intolerance compared with non-diabetic PWH. Lastly, while cell type-specific gene expression among PWH with diabetes was globally similar to HIV-negative individuals with diabetes, we observed substantially divergent intercellular communication pathways. Discussion: These findings suggest a central role of tissue-resident immune cells in regulating SAT inflammation among PWH with metabolic disease, and underscore unique mechanisms that may converge to promote metabolic disease.


Assuntos
Intolerância à Glucose , Infecções por HIV , Humanos , Intolerância à Glucose/genética , Gordura Subcutânea , Inflamação , Lipídeos
12.
Front Physiol ; 14: 1208270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534363

RESUMO

Introduction: Salt sensitivity of blood pressure is a phenomenon in which blood pressure changes according to dietary sodium intake. Our previous studies found that high salt activates antigen presenting cells, resulting in the development of hypertension. The mechanisms by which salt-induced immune cell activation is regulated in salt sensitivity of blood pressure are unknown. In the current study, we investigated dietary salt-induced effects on the renin-angiotensin-aldosterone system (RAAS) gene expression in myeloid immune cells and their impact on salt sensitive hypertension in humans. Methods: We performed both bulk and single-cell sequencing analysis on immune cells with in vitro and in vivo high dietary salt treatment in humans using a rigorous salt-loading/depletion protocol to phenotype salt-sensitivity of blood pressure. We also measured plasma renin and aldosterone using radioimmunoassay. Results: We found that while in vitro high sodium exposure downregulated the expression of renin, renin binding protein and renin receptor, there were no significant changes in the genes of the renin-angiotensin system in response to dietary salt loading and depletion in vivo. Plasma renin in salt sensitive individuals tended to be lower with a blunted response to the salt loading/depletion challenge as previously reported. Discussion: These findings suggest that unlike systemic RAAS, acute changes in dietary salt intake do not regulate RAAS expression in myeloid immune cells.

13.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37292887

RESUMO

The Sorting and Assembly Machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system (MICOS) complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy (SBF-SEM) and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.

15.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162990

RESUMO

Persistent systemic inflammation in persons with HIV (PWH) is accompanied by an increased risk of metabolic disease. Yet, changes in the innate and adaptive immune system in PWH who develop metabolic disease remain poorly defined. Using unbiased approaches, we show that PWH with prediabetes/diabetes have a significantly higher proportion of circulating CD14 + monocytes complexed to T cells. The complexed CD3 + T cells and CD14 + monocytes demonstrate functional immune synapses, increased expression of proinflammatory cytokines, and greater glucose utilization. Furthermore, these complexes harbor more latent HIV DNA compared to CD14 + monocytes or CD4 + T cells. Our results demonstrate that circulating CD3 + CD14 + T cell-monocyte pairs represent functional dynamic cellular interactions that likely contribute to inflammation and, in light of their increased proportion, may have a role in metabolic disease pathogenesis. These findings provide an incentive for future studies to investigate T cell-monocyte immune complexes as mechanistic in HIV cure and diseases of aging. Highlights: Persons with HIV and diabetes have increased circulating CD3 + CD14 + T cell-monocyte complexes. CD3 + CD14 + T cell-monocytes are a heterogenous group of functional and dynamic complexes. We can detect HIV in T cell-monocyte complexes. The proportion of CD3 + CD14 + T cell-monocyte complexes is positively associated with blood glucose levels and negatively with plasma IL-10 and CD4 + T regulatory cells.

16.
Front Immunol ; 14: 1099356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865544

RESUMO

Persons with HIV (PWH) on long-term antiretroviral therapy (ART) have a higher incidence and prevalence of cardiometabolic diseases attributed, in part, to persistent inflammation despite viral suppression. In addition to traditional risk factors, immune responses to co-infections such as cytomegalovirus (CMV) may play an unappreciated role in cardiometabolic comorbidities and offer new potential therapeutic targets in a subgroup of individuals. We assessed the relationship of CX3CR1+, GPR56+, and CD57+/- T cells (termed CGC+) with comorbid conditions in a cohort of 134 PWH co-infected with CMV on long-term ART. We found that PWH with cardiometabolic diseases (non-alcoholic fatty liver disease, calcified coronary arteries, or diabetes) had higher circulating CGC+CD4+ T cells compared to metabolically healthy PWH. The traditional risk factor most correlated with CGC+CD4+ T cell frequency was fasting blood glucose, as well as starch/sucrose metabolites. While unstimulated CGC+CD4+ T cells, like other memory T cells, depend on oxidative phosphorylation for energy, they exhibited higher expression of carnitine palmitoyl transferase 1A compared to other CD4+ T cell subsets, suggesting a potentially greater capacity for fatty acid ß-oxidation. Lastly, we show that CMV-specific T cells against multiple viral epitopes are predominantly CGC+. Together, this study suggests that among PWH, CGC+ CD4+ T cells are frequently CMV-specific and are associated with diabetes, coronary arterial calcium, and non-alcoholic fatty liver disease. Future studies should assess whether anti-CMV therapies could reduce cardiometabolic disease risk in some individuals.


Assuntos
Linfócitos T CD4-Positivos , Doenças Cardiovasculares , Infecções por HIV , Humanos , Cálcio , Receptor 1 de Quimiocina CX3C , Citomegalovirus , Fatores de Risco , Subpopulações de Linfócitos T
17.
Trends Mol Med ; 29(6): 422-424, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990857

RESUMO

Deng and colleagues highlight the importance of understanding the divergent roles of ß2-adrenoceptor (ß2AR) in high-fat diet-induced heart failure. ß2AR signaling has beneficial and detrimental effects depending on the context and level of activation. We discuss the importance of these findings and their implications in developing effective and safe therapies.


Assuntos
Insuficiência Cardíaca , Receptores Adrenérgicos beta 2 , Humanos , Receptores Adrenérgicos beta 2/fisiologia , Transdução de Sinais , Insuficiência Cardíaca/terapia
18.
AIDS ; 37(7): 1065-1075, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36928263

RESUMO

BACKGROUND: Persons with HIV (PWH) on antiretroviral therapy (ART) have persistent immune activation associated with increased risk for non-AIDS related diseases. Latent tuberculosis infection (LTBI), endemic in Africa, may contribute to this immune dysregulation. We evaluated the impact of HIV and TB co-infection on plasma pro- and anti-inflammatory cytokines among Kenyan adults. METHODS: We compared data from 221 PWH on long-term ART and 177 HIV-negative adults examining biomarkers of pro-[sCD14, interleukin (IL)-2, IL-6, interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-12p70, IL-17A] and anti(IL-4, IL-5, IL-13) inflammatory cytokines, by HIV/LTBI status (HIV+LTBI+, HIV+LTBI-, HIV-LTBI+, HIV-LTBI-). LTBI was diagnosed based on a positive QuantiFERON TB Gold-Plus test in the absence of active TB symptoms. Linear regression was used to evaluate the associations of HIV, LTBI, and HIV/LTBI status with biomarkers adjusting for clinical factors including HIV-specific factors. RESULTS: Half of the participants were women and 52% had LTBI. HIV was independently associated with higher sCD14, IL-15, IL-6, IL-4, IL-5. LTBI was independently associated with higher TNF-α, IL-12p70, IL-17A, IL-4, IL-13 in adjusted models ( P  < 0.05). LTBI status was associated with higher IL-4 and IL-12p70 only among PWH, but not HIV-negative participants ( P  < 0.05 for interactions). In multivariate analysis, only HIV+LTBI+ demonstrated elevated levels of TNF-α, IL-6, IL-12p70, IL-15, IL-17A, IL4, IL-5, IL-13 in comparison to the HIV-LTBI- ( P  < 0.05 for all). The effect of LTBI on cytokines among PWH was independent of CD4 + T-cell count and ART duration. CONCLUSIONS: Despite viral suppression, persons with HIV and LTBI exhibit abnormal cytokine production accompanied by high concentrations of pro- and anti-inflammatory cytokines.


Assuntos
Infecções por HIV , Tuberculose Latente , Adulto , Masculino , Humanos , Feminino , Citocinas , Tuberculose Latente/diagnóstico , Tuberculose Latente/tratamento farmacológico , Interleucina-17 , Interleucina-15/uso terapêutico , Quênia , Fator de Necrose Tumoral alfa , Interleucina-13 , Interleucina-4 , Interleucina-5/uso terapêutico , Interleucina-6 , Receptores de Lipopolissacarídeos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Biomarcadores , Anti-Inflamatórios
19.
J Am Heart Assoc ; 11(23): e025768, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382956

RESUMO

Background Persons with HIV have a higher prevalence of coronary artery disease compared with their HIV-negative counterparts. Earlier identification of subclinical atherosclerosis may provide a greater opportunity for cardiovascular disease risk reduction. We investigated coronary cross-sectional area (CorCSA) by noncontrasted computed tomography imaging as a noninvasive measure of arterial remodeling among virally suppressed persons with HIV. Methods and Results We assessed 105 persons with HIV with a spectrum of cardiometabolic health. All participants underwent computed tomography imaging to assess the mean corCSA of the proximal left anterior descending artery and 28 participants underwent additional coronary computed tomography angiography. Partial Spearman rank correlations adjusted for cardiovascular disease risk factors were used to assess relationships of corCSA with anthropometric measurements, HIV-related factors, and plasma cytokines. Mean corCSA measured by noncontrast computed tomography and coronary computed tomography angiography were strongly correlated (ρ=0.91, P<0.0001). Higher mean corCSA was present in those with coronary artery calcium (P=0.005) and it correlated with participants' atherosclerotic cardiovascular disease risk score (ρ=0.35, P=0.01). After adjusting for established cardiovascular disease risk factors, we observed an inverse relationship between corCSA and CD4+ T-cell count (ρ=-0.2, P=0.047). Removal of age from the model strengthened the relationships between corCSA and antiretroviral therapy duration (from ρ=0.19, P=0.08 to ρ=0.3, P=0.01). CorCSA was also inversely correlated with plasma IL-10 (ρ=-0.25, P=0.03) but had no relationship with IL-6 (ρ=0.11, P=0.4) or IL-1ß (ρ=0.08, P=0.5). Conclusions Positive coronary arterial remodeling, an imaging marker of subclinical atherosclerosis, is associated with a lower CD4 T-cell count, lower circulating IL-10, and possibly a longer antiretroviral therapy duration in persons with HIV. Registration Clinicaltrials.gov; Unique identifier: NCT04451980.


Assuntos
Doenças Cardiovasculares , Interleucina-10 , Humanos , Artérias , Tomografia Computadorizada por Raios X
20.
Curr Hypertens Rep ; 24(12): 627-637, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36136214

RESUMO

PURPOSE OF REVIEW: In this review, we focus on immune cell activation in obesity and cardiovascular disease, highlighting specific immune cell microenvironments present in individuals with atherosclerosis, non-ischemic heart disease, hypertension, and infectious diseases. RECENT FINDINGS: Obesity and cardiovascular disease are intimately linked and often characterized by inflammation and a cluster of metabolic complications. Compelling evidence from single-cell analysis suggests that obese adipose tissue is inflammatory and infiltrated by almost all immune cell populations. How this inflammatory tissue state contributes to more systemic conditions such as cardiovascular and infectious disease is less well understood. However, current research suggests that changes in the adipose tissue immune environment impact an individual's ability to combat illnesses such as influenza and SARS-CoV2. Obesity is becoming increasingly prevalent globally and is often associated with type 2 diabetes and heart disease. An increased inflammatory state is a major contributor to this association. Widespread chronic inflammation in these disease states is accompanied by an increase in both innate and adaptive immune cell activation. Acutely, these immune cell changes are beneficial as they sustain homeostasis as inflammation increases. However, persistent inflammation subsequently damages tissues and organs throughout the body. Future studies aimed at understanding the unique immune cell populations in each tissue compartment impacted by obesity may hold potential for therapeutic applications.


Assuntos
COVID-19 , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Cardiopatias , Hipertensão , Humanos , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/complicações , RNA Viral/metabolismo , Hipertensão/complicações , SARS-CoV-2 , Obesidade/complicações , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Inflamação , Cardiopatias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...