Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(14): 16062-16073, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377590

RESUMO

Amphiphilic coatings are promising materials for fouling-release applications, especially when their building blocks are inexpensive, biodegradable, and readily accessible polysaccharides. Here, amphiphilic polysaccharides were fabricated by coupling hydrophobic pentafluoropropylamine (PFPA) to carboxylate groups of hydrophilic alginic acid, a natural biopolymer with high water-binding capacity. Layer-by-layer (LbL) coatings comprising unmodified or amphiphilic alginic acid (AA*) and polyethylenimine (PEI) were assembled to explore how different PFPA contents affect their physicochemical properties, resistance against nonspecific adsorption (NSA) of proteins, and antifouling activity against marine bacteria (Cobetia marina) and diatoms (Navicula perminuta). The amphiphilic multilayers, characterized through spectroscopic ellipsometry, water contact angle goniometry, elemental analysis, AFM, XPS, and SPR spectroscopy, showed similar or even higher swelling in water and exhibited higher resistance toward NSA of proteins and microfouling marine organisms than multilayers without fluoroalkyl groups.


Assuntos
Incrustação Biológica , Diatomáceas , Adsorção , Alginatos , Ácido Algínico , Incrustação Biológica/prevenção & controle , Polissacarídeos , Propriedades de Superfície , Água
2.
Langmuir ; 37(19): 5950-5963, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33969986

RESUMO

Layer-by-layer (LbL) assembly is a versatile platform for applying coatings and studying the properties of promising compounds for antifouling applications. Here, alginate-based LbL coatings were fabricated by alternating the deposition of alginic acid and chitosan or polyethylenimine to form multilayer coatings. Films were prepared with either odd or even bilayer numbers to investigate if the termination of the LbL coatings affects the physicochemical properties, resistance against the nonspecific adsorption (NSA) of proteins, and antifouling efficacy. The hydrophilic films, which were characterized using spectroscopic ellipsometry, water contact angle goniometry, ATR-FTIR spectroscopy, AFM, XPS, and SPR spectroscopy, revealed high swelling in water and strongly reduced the NSA of proteins compared to the hydrophobic reference. While the choice of the polycation was important for the protein resistance of the LbL coatings, the termination mattered less. The attachment of diatoms and settling of barnacle cypris larvae revealed good antifouling properties that were controlled by the termination and the charge density of the LbL films.


Assuntos
Alginatos , Incrustação Biológica , Adsorção , Incrustação Biológica/prevenção & controle , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
3.
Langmuir ; 37(18): 5591-5600, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33930274

RESUMO

Methacrylate and acrylate monomers are popular building blocks for antifouling (AF) and fouling-release (FR) coatings to counteract marine biofouling. They are used in various combinations and often combined into amphiphilic materials. This study investigated the FR properties of amphiphilic ethylene glycol dicyclopentenyl ether acrylate (DCPEA) and the corresponding methacrylate (DCPEMA) blended with 5 wt % zwitterionic carboxybetaine acrylate (CBA) and the corresponding methacrylate (CBMA). A series of (co)polymers with different acrylate/methacrylate compositions were synthesized and tested against the attachment of the diatom Navicula perminuta and in short-term dynamic field exposure experiments. The more hydrophobic methacrylate DCPEMA homopolymer outperformed its acrylate counterpart DCPEA. Incorporated zwitterionic functionality of both CBMA and CBA imparted ultralow fouling capability in the amphiphilic polymers toward diatom attachment, whereas in the real ocean environment, only the employment of CBMA reduced marine biofouling. Moreover, it was observed that CBA-containing coatings showed different surface morphologies and roughnesses compared to the CBMA analogues. Particularly, a high impact was found when acrylic CBA was mixed with methacrylic DCPEMA. While the wettability of the coatings was comparable, investigated methacrylates in general exhibited superior fouling resistance compared to the acrylates.

4.
ACS Appl Mater Interfaces ; 13(5): 6659-6669, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497184

RESUMO

Dendritic polyglycerol (PG) was covalently coupled to 2-hydroxyethyl methacrylate (HEMA) by an anionically catalyzed ring-opening polymerization generating a dendritic PG-HEMA with four PG repetition units (PG4MA). Coatings of the methacrylate monomer were prepared by grafting-through and compared against commercially available hydrophilic monomers of HEMA, poly(ethylene) glycol methacrylate (PEGMA), and poly(propylene) glycol methacrylate (PPGMA). The obtained coatings were characterized by modern surface analytical techniques, including water contact angle goniometry (sessile and captive bubble), attenuated total internal reflection Fourier transform infrared spectroscopy, and atomic force microscopy. The antifouling (AF) and fouling-release (FR) properties of the coatings were tested against the model organisms Cobetia marina and Navicula perminuta in laboratory-scale dynamic accumulation assays as well as in a dynamic short-term field exposure (DSFE) in the marine environment. In addition, the hydration of the coatings and their susceptibility toward silt uptake were evaluated, revealing a strong correlation between water uptake, silt incorporation, and field assay performance. While all glycol derivatives showed good resistance in laboratory settlement experiments, PPGMA turned out to be less susceptible to silt incorporation and outperformed PEGMA and PG4MA in the DSFE assay.


Assuntos
Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Diatomáceas/efeitos dos fármacos , Halomonadaceae/efeitos dos fármacos , Metacrilatos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Metacrilatos/síntese química , Metacrilatos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Água/química
5.
ACS Appl Bio Mater ; 4(3): 2385-2397, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014359

RESUMO

Polyelectrolyte multilayer (PEM) assembly is a versatile tool to construct low-fouling coatings. For application in the marine environment, their structure needs to be stabilized by covalent linkage. Here, we introduce an approach for spin coating of silane-based sol-gel chemistries using layer-by-layer assembly of polysaccharide-based hybrid polymer coatings (LBLHPs). The silane sol-gel chemistry allows the films to be cross-linked under water-based and mild reaction conditions. Two different silanes were used for this purpose, a conventional triethoxymethyl silane and a de novo synthesized zwitterionic silane. The polysaccharide-silane hybrid polymer coatings were thoroughly characterized with spectroscopic ellipsometry, water contact angle (WCA) goniometry, attenuated total reflection-Fourier transform infrared spectroscopy, and atomic force microscopy. The coatings showed good stability in seawater, smooth surfaces, a high degree of hydration, and WCAs below or close to the Berg limit. LBLHPs showed low-fouling properties in biological assays against nonspecific protein adsorption, attachment of the diatom Navicula perminuta, and settlement of zoospores of the macroalga Ulva linza.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/farmacologia , Diatomáceas/efeitos dos fármacos , Polissacarídeos/farmacologia , Silanos/farmacologia , Ulva/efeitos dos fármacos , Configuração de Carboidratos , Materiais Revestidos Biocompatíveis/química , Teste de Materiais , Tamanho da Partícula , Polissacarídeos/química , Silanos/química
6.
Biofouling ; 36(9): 1049-1064, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33251857

RESUMO

Polysaccharide multilayers consisting of hyaluronic acid and chitosan were prepared by layer-by-layer assembly. To be used in seawater, the multilayers were crosslinked to a different degree using thermal or chemical methods. ATR-FTIR revealed different amide densities as a result of the crosslinking conditions. AFM showed that the crosslinking affected the roughness and swelling behavior of the coatings. The stability and degradability of the multilayers in aqueous environments were monitored with spectroscopic ellipsometry. The resistance of the coatings against non-specific protein adsorption was characterized by SPR spectroscopy. Settlement assays using Ulva linza zoospores and removal assays using the diatom Navicula incerta showed that the slowly degradable coatings were less prone to fouling than the strongly crosslinked ones. Thus, the coatings were a suitable model system to show that crosslinking the multilayers under mild conditions and equipping the coatings with controlled degradation rates enhances their antifouling and fouling-release properties against marine fouling organisms.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Quitosana , Ácido Hialurônico , Polieletrólitos , Propriedades de Superfície , Ulva
7.
ACS Appl Mater Interfaces ; 12(47): 53286-53296, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180471

RESUMO

Hybrid materials (HMs) offer unique properties as they combine inorganic and organic components into a single material. Here, we developed HM coatings for marine antifouling applications using sol-gel chemistry and naturally occurring polysaccharides. The coatings were characterized by spectroscopic ellipsometry, contact angle goniometry, AFM, and ATR-FTIR, and their stability was tested in saline media. Marine antifouling and fouling-release properties were tested in laboratory assays against the settlement of larvae of the barnacle Balanus improvisus and against the settlement and removal of the diatom Navicula incerta. Furthermore, laboratory data were confirmed in short-term dynamic field assays in Florida, USA. All hybrid coatings revealed a superior performance in the assays compared to a hydrophobic reference. Within the hybrids, those with the highest degree of hydrophilicity and negative net charge across the surface performed best. Alginate and heparin showed good performance, making these hybrid materials promising building blocks for fouling-resistant coatings.

8.
Biofouling ; 36(6): 646-659, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32718200

RESUMO

Hydrogel coatings effectively reduce the attachment of proteins and organisms in laboratory assays, in particular when made from zwitterionic monomers. In field experiments with multiple species and non-living material, such coatings suffer from adsorption of particulate matter. In this study, the zwitterionic monomer 3-[N-(2-methacryloyloxyethyl)-N,N-dimethylammonio] propanesulfonate (SPE) was copolymerized with increasing amounts of the photo-crosslinker benzophenon-4-yloxyethyl methacrylate (BPEMA) to systematically alter the density of crosslinks between the polymer chains. The effect of increasing crosslink density on the antifouling (AF) performance of the coatings was investigated in laboratory assays and fields tests. In both cases, the AF performance was improved by increasing the crosslinker content. The coatings reduced protein, diatom, and barnacle accumulation, and showed better resistance to biomass accumulation. The findings underline that the marine AF performance of hydrogel coatings does not only depend on the specific chemical structure of the polymers, but also on their physico-chemical properties such as rigidity and swelling.


Assuntos
Incrustação Biológica , Hidrogéis , Thoracica , Animais , Incrustação Biológica/prevenção & controle , Metacrilatos , Propriedades de Superfície
9.
Biointerphases ; 15(3): 031014, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32586099

RESUMO

Testing the adhesion of marine biofilm formers on bioresistant coatings is important to determine their fouling-release and antifouling properties. A dynamic attachment assay for the marine bacterium Cobetia marina (C. marina) was developed to test the adhesion on coatings and bioresistant surfaces. With well-defined culture conditions, the reproducibility of the microfluidic accumulation experiments with C. marina was verified using self-assembling monolayers as model surfaces. The assay discriminated the attachment of C. marina on four different surfaces with different wettability and protein resistances. In addition to these benchmark experiments on self-assembled monolayers, the adhesion of C. marina on polyglycerol coatings with different thicknesses was investigated.


Assuntos
Organismos Aquáticos/citologia , Aderência Bacteriana , Incrustação Biológica , Bioensaio , Materiais Revestidos Biocompatíveis/farmacologia , Halomonadaceae/citologia , Microfluídica , Organismos Aquáticos/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Contagem de Colônia Microbiana , Glicerol/farmacologia , Halomonadaceae/efeitos dos fármacos , Halomonadaceae/crescimento & desenvolvimento , Halomonadaceae/ultraestrutura , Polímeros/farmacologia , Reologia , Água
10.
ACS Appl Mater Interfaces ; 12(30): 34148-34160, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32567832

RESUMO

Zwitterionic materials received great attention in recent studies due to their high antifouling potential, though their application in practical coatings is still challenging. Amphiphilic polymers have been proven to be an effective method to combat fouling in the marine environment. This study reports the incorporation of small amounts of zwitterionic carboxybetaine methacrylate (CBMA) into hydrophobic ethylene glycol dicyclopentenyl ether acrylate (DCPEA). A new set of copolymers with varying amphiphilicities was synthesized and coated on chemically modified glass substrates. The antifouling capabilities were assessed against the diatom Navicula perminuta and multiple species in the field. Unsurprisingly, high diatom densities were observed on the hydrophobic control coatings. The integration of small zwitterionic contents of only ∼5 wt % was already sufficient to rapidly form a hydrophilic interface that led to a strong reduction of fouling. Ultralow fouling was also observed for the pure zwitterionic coatings in laboratory experiments, but it failed when tested in the real ocean environment. We noticed that the ability to absorb large amounts of water and the diffuse nature of the interphase correlate with the adsorption of silt, which can mask the hydrophilic chemistries and facilitate the settlement of organisms. The amphiphilic coatings showed low fouling in dynamic short-term field exposures, which could be explained by the reduced tendency of the coatings for sediment adsorption.


Assuntos
Incrustação Biológica/prevenção & controle , Diatomáceas/fisiologia , Polímeros/química , Acrilatos/química , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Propriedades de Superfície
11.
Langmuir ; 35(50): 16568-16575, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31746204

RESUMO

Dendritic polyglycerols (PGs) were synthesized and postmodified by grafting of poly(ethylene glycol) (PEG) and polypropylene glycol (PPG) diglycidyl ether groups, and their antifouling and fouling-release properties were tested. Coating characterization by spectroscopic ellipsometry, contact angle goniometry, attenuated total internal reflection-Fourier transform infrared spectroscopy (ATR-FTIR), and atomic force microscopy showed brushlike morphologies with a high degree of microscale roughness and the ability to absorb large amounts of water within seconds. PGs with three different thicknesses were tested in laboratory assays against settlement of larvae of the barnacle Balanus improvisus and against the settlement and removal of zoospores of the alga Ulva linza. Very low coating thicknesses, e.g., 11 nm, reduced the settlement of barnacles, under static conditions, to 2% compared with 55% for an octadecyltrichlorosilane reference surface. In contrast, zoospores of U. linza settled readily but the vast majority were removed by exposure to a shear force of 52 Pa. Both PEG and PPG modification increased the antifouling properties of the PG films, providing a direct comparison of the ultralow fouling properties of all three polymers. Both, the modified and the nonmodified PGs are promising components for incorporation into amphiphilic fouling-resistant coatings.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/microbiologia , Incrustação Biológica/prevenção & controle , Dendrímeros/química , Glicerol/química , Glicerol/farmacologia , Polímeros/química , Polímeros/farmacologia , Animais , Propriedades de Superfície , Thoracica/efeitos dos fármacos , Thoracica/microbiologia , Ulva/efeitos dos fármacos , Ulva/microbiologia
12.
ACS Appl Mater Interfaces ; 10(41): 34965-34973, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30248259

RESUMO

Dendritic polyglycerols (PGs) were grafted onto surfaces using a ring-opening polymerization reaction, and the fouling-release properties against marine organisms were determined. The coatings were characterized by spectroscopic ellipsometry, contact angle goniometry, ATR-FTIR, and stability tests in different aqueous media. A high resistance toward the attachment of different proteins was found. The PG coatings with three different thicknesses were tested in a laboratory assay against the diatom Navicula incerta and in a field assay using a rotating disk. Under static conditions, the PG coatings did not inhibit the initial attachment of diatoms, but up to 94% of attached diatoms could be removed from the coatings after exposure to a shear stress of 19 Pa. Fouling release was found to be enhanced if the coatings were sufficiently thick. The excellent fouling-release properties were supported in dynamic field-immersion experiments in which the samples were continually exposed to a shear stress of 0.18 Pa.


Assuntos
Incrustação Biológica/prevenção & controle , Diatomáceas/crescimento & desenvolvimento , Glicerol/farmacologia , Polímeros/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...