Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
PLoS One ; 18(7): e0288542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440561

RESUMO

In ecotoxicology, evaluation of toxicities and no observed effect concentrations (NOEC) of test compounds in experimental fish is commonly based on molecular-, biochemical- and analytical chemistry analyses of organ/tissue samples and the assessment of (histo-) pathological lesions. Standardization of organ/tissue sampling locations, sample numbers, and sample processing contributes to warrant the reproducibility and inter- and intra-study comparability of analysis results. The present article provides the first comprehensive tissue sampling guidelines specifically adapted to rainbow trout (Oncorhynchus mykiss) as a frequently used fish species in ecotoxicological studies. A broad spectrum of ~40 different organs and tissues is covered. Appropriate sampling locations, sample sizes and sample numbers for subsequent routine histopathological evaluation (all organs/tissue) and for molecular analyses (~30 organs/tissues) are described in detail and illustrated with schematic drawings and representative macroscopic and histological images. These field-proven sampling guidelines were developed based on the pertinent literature and practical experience in ecotoxicological fish studies. They are intended to serve as a standard reference for any routine ecotoxicological study using rainbow trout as a test system. A broad application of the featured tissue sampling procedures will help to improve the reproducibility of analyses and to reduce inter- and intra-study variability induced by sampling bias and (normal) inter-sample morphological variation, and will therefore provide a robust basis for reliable characterization of toxicity and NOEC identification of diverse test substances and aquatic pollutants.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Ecotoxicologia , Reprodutibilidade dos Testes , Poluentes Químicos da Água/toxicidade
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674624

RESUMO

Plasmalemma vesicle-associated protein (PLVAP) is the main component of endothelial diaphragms in fenestrae, caveolae, and transendothelial channels. PLVAP is expressed in the adult kidney glomerulus upon injury. Glomerular endothelial injury is associated with progressive loss of kidney function in diabetic kidney disease (DKD). This study aimed to investigate whether PLVAP could serve as a marker for glomerular endothelial damage in DKD. Glomerular PLVAP expression was analyzed in different mouse models of DKD and their respective healthy control animals using automatic digital quantification of histological whole kidney sections. Transgenic mice expressing a dominant-negative GIP receptor (GIPRdn) in pancreatic beta-cells as a model for diabetes mellitus (DM) type 1 and black and tan brachyuric (BTBR) ob/ob mice, as a model for DM type 2, were used. Distinct PLVAP induction was observed in all diabetic models studied. Traces of glomerular PLVAP expression could be identified in the healthy control kidneys using automated quantification. Stainings for other endothelial injury markers such as CD31 or the erythroblast transformation-specific related gene (ERG) displayed no differences between diabetic and healthy groups at the time points when PLVAP was induced. The same was also true for the mesangial cells marker α8Integrin, while the podocyte marker nephrin appeared to be diminished only in BTBR ob/ob mice. Glomerular hypertrophy, which is one of the initial morphological signs of diabetic kidney damage, was observed in both diabetic models. These findings suggest that PLVAP is an early marker of glomerular endothelial injury in diabetes-induced kidney damage in mice.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Glomérulos Renais/metabolismo , Rim/metabolismo , Camundongos Endogâmicos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Camundongos Transgênicos , Proteínas de Membrana/metabolismo
3.
Environ Toxicol Chem ; 42(4): 859-872, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36705425

RESUMO

In 2013, the nonsteroidal anti-inflammatory drug diclofenac (DCF) was included in the watch list for emerging pollutants under the European Union Water Framework Directive. Frequently, monitoring data revealed DCF concentrations in surface waters exceeding the proposed environmental quality standards of 0.04 µg L-1 and 0.126 µg L-1 . In recent literature, the possible effects of DCF on fish are discussed controversially. To contribute to a realistic risk assessment of DCF, a 28-day exposure experiment was carried on rainbow trout (Oncorhynchus mykiss). To warrant reliability of data, experiments were conducted considering the Criteria for Reporting and Evaluating Ecotoxicity Data. The test concentrations of DCF used (0.1, 0.5, 1, 5, 25, and 100 µg L-1 ) also included environmentally relevant concentrations. The lowest-observed-effect concentration (LOEC) for a significant decrease in the plasma concentrations of the DCF biomarker prostaglandin E2 was 0.5 µg L-1 (male fish). For objective evaluation of relevant histomorphological parameters of gills and trunk kidneys, unbiased quantitative stereological methods were applied. In the gills, significant increases in the thickness of the secondary lamella and in the true harmonic mean of barrier thickness in secondary lamellae were present at DCF concentrations of 25 µg L-1 and 100 µg L-1 . In the trunk kidneys, the absolute and relative volumes of nephrons were significantly decreased, paralleled by a significant increase of the volume of the interstitial renal tissue. With regard to quantitative histomorphological alterations in the trunk kidney, the observed LOEC was 0.5 µg L-1 . The quantitative histomorphological analyses that were conducted allow identification and objective quantification of even subtle but significant morphological effects and thus provide an important contribution for the comparability of study results for the determination of no-observed-effect concentrations (NOEC). Environ Toxicol Chem 2023;42:859-872. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Masculino , Animais , Diclofenaco/toxicidade , Reprodutibilidade dos Testes , Anti-Inflamatórios não Esteroides/toxicidade , Rim , Poluentes Químicos da Água/análise , Brânquias
4.
Neuromuscul Disord ; 32(7): 543-556, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35659494

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal muscles and heart. Animal models are essential for preclinical evaluation of novel diagnostic procedures and treatment strategies. Gene targeting/editing offers the possibility of developing tailored pig models for monogenic diseases. The first porcine DMD model was generated by deletion of DMD exon 52 (DMDΔ52) in cultured kidney cells, which were used for somatic cell nuclear transfer to produce DMDΔ52 offspring. The animals resembled clinical, biochemical, and pathological hallmarks of DMD, but died before sexual maturity, thus preventing their propagation by breeding. This limitation was overcome by the generation of female heterozygous DMDΔ52 carrier pigs, which allowed the establishment of a large breeding colony. In this overview, we summarize how porcine DMD models have been used for dissecting disease mechanisms, for validating multispectral optoacoustic tomography as an imaging modality for monitoring fibrosis, and for preclinical testing of a CRISPR/Cas9 based approach to restore an intact DMD reading frame. Particular advantages of porcine DMD models include their targeted design and the rapid disease progression with early cardiac involvement, facilitating translational studies in reasonable time frames.


Assuntos
Distrofia Muscular de Duchenne , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Distrofina/genética , Éxons , Feminino , Edição de Genes/métodos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Suínos
5.
Front Med (Lausanne) ; 8: 751277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888323

RESUMO

Adipose tissue (AT) is no longer considered to be responsible for energy storage only but is now recognized as a major endocrine organ that is distributed across different parts of the body and is actively involved in regulatory processes controlling energy homeostasis. Moreover, AT plays a crucial role in the development of metabolic disease such as diabetes. Recent evidence has shown that adipokines have the ability to regulate blood glucose levels and improve metabolic homeostasis. While AT has been studied extensively in the context of type 2 diabetes, less is known about how different AT types are affected by absolute insulin deficiency in type 1 or permanent neonatal diabetes mellitus. Here, we analyzed visceral and subcutaneous AT in a diabetic, insulin-deficient pig model (MIDY) and wild-type (WT) littermate controls by RNA sequencing and quantitative proteomics. Multi-omics analysis indicates a depot-specific dysregulation of crucial metabolic pathways in MIDY AT samples. We identified key proteins involved in glucose uptake and downstream signaling, lipogenesis, lipolysis and ß-oxidation to be differentially regulated between visceral and subcutaneous AT in response to insulin deficiency. Proteins related to glycogenolysis, pyruvate metabolism, TCA cycle and lipogenesis were increased in subcutaneous AT, whereas ß-oxidation-related proteins were increased in visceral AT from MIDY pigs, pointing at a regionally different metabolic adaptation to master energy stress arising from diminished glucose utilization in MIDY AT. Chronic, absolute insulin deficiency and hyperglycemia revealed fat depot-specific signatures using multi-omics analysis. The generated datasets are a valuable resource for further comparative and translational studies in clinical diabetes research.

6.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796900

RESUMO

Large-animal models for Duchenne muscular dystrophy (DMD) are crucial for the evaluation of diagnostic procedures and treatment strategies. Pigs cloned from male cells lacking DMD exon 52 (DMDΔ52) exhibit molecular, clinical and pathological hallmarks of DMD, but die before sexual maturity and cannot be propagated by breeding. Therefore, we generated female DMD+/- carriers. A single founder animal had 11 litters with 29 DMDY/-, 34 DMD+/- as well as 36 male and 29 female wild-type offspring. Breeding with F1 and F2 DMD+/- carriers resulted in an additional 114 DMDY/- piglets. With intensive neonatal management, the majority survived for 3-4 months, providing statistically relevant cohorts for experimental studies. Pathological investigations and proteome studies of skeletal muscles and myocardium confirmed the resemblance to human disease mechanisms. Importantly, DMDY/- pigs displayed progressive myocardial fibrosis and increased expression of connexin-43, associated with significantly reduced left ventricular ejection fraction, at 3 months. Furthermore, behavioral tests provided evidence for impaired cognitive ability. Our breeding cohort of DMDΔ52 pigs and standardized tissue repositories provide important resources for studying DMD disease mechanisms and for testing novel treatment strategies.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Animais , Cardiomiopatias/patologia , Feminino , Humanos , Masculino , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Volume Sistólico , Suínos , Função Ventricular Esquerda
7.
J Neurosci Methods ; 361: 109272, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34216707

RESUMO

BACKGROUND: In the neurosciences, the physical disector method represents an established quantitative stereological method for unbiased sampling and counting of cells in histological tissue sections of known thickness. Physical disector analyses are conventionally performed using plastic-embedded tissue samples, because plastic-embedding causes a comparably low and definable shrinkage of the embedded tissue, and the thickness of thin plastic sections can be determined adequately. However, immunohistochemistry protocols often don't work satisfactorily in sections of plastic-embedded tissue. NEW METHOD: Here, a new methodological approach is presented, allowing for physical disector analyses of immunohistochemically labeled cells in paraffin sections. The embedding-related tissue shrinkage is standardized by using defined tissue sample volumes and paraffin volumes, and the extent of tissue shrinkage can be determined accurately from the sample volumes prior to and after embedding. Co-embedding of polyethylene section thickness standards together with the tissue samples allows the precise determination of individual paraffin section thicknesses by spectral reflectance measurements. RESULTS AND COMPARISON WITH EXISTING METHOD(S): The applicability of the new method is demonstrated by physical disector analysis of immunohistochemically identified somatotroph cells in paraffin sections of porcine pituitary gland tissue. With consideration of individual shrinkage factors and section thicknesses, the cell numbers and mean volumes estimated in paraffin disector sections do not significantly differ from the results obtained by analyses of plastic-embedded pituitary tissue samples of the identical animals (2.4% average difference). CONCLUSIONS: The featured method enables combination of paraffin section immunohistochemistry and physical disector analyses for unbiased quantitative stereological analyses of different cell types.


Assuntos
Microtomia , Parafina , Animais , Imuno-Histoquímica , Inclusão em Parafina , Suínos
8.
PLoS One ; 16(3): e0248594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33725017

RESUMO

In translational obesity research, objective assessment of adipocyte sizes and numbers is essential to characterize histomorphological alterations linked to obesity, and to evaluate the efficacies of experimental medicinal or dietetic interventions. Design-based quantitative stereological techniques based on the analysis of 2D-histological sections provide unbiased estimates of relevant 3D-parameters of adipocyte morphology, but often involve complex and time-consuming tissue processing and analysis steps. Here we report the application of direct 3D light sheet fluorescence microscopy (LSFM) for effective and accurate analysis of adipocyte volumes and numbers in optically cleared adipose tissue samples from a porcine model of diet-induced obesity (DIO). Subcutaneous and visceral adipose tissue samples from DIO-minipigs and lean controls were systematically randomly sampled, optically cleared with 3DISCO (3-dimensional imaging of solvent cleared organs), stained with eosin, and subjected to LSFM for detection of adipocyte cell membrane autofluorescence. Individual adipocytes were unbiasedly sampled in digital 3D reconstructions of the adipose tissue samples, and their individual cell volumes were directly measured by automated digital image analysis. Adipocyte numbers and mean volumes obtained by LSFM analysis did not significantly differ from the corresponding values obtained by unbiased quantitative stereological analysis techniques performed on the same samples, thus proving the applicability of LSFM for efficient analysis of relevant morphological adipocyte parameters. The results of the present study demonstrate an adipose tissue depot specific plasticity of adipocyte growth responses to nutrient oversupply. This was characterized by an exclusively hypertrophic growth of visceral adipocytes, whereas adipocytes in subcutaneous fat tissue depots also displayed a marked (hyperplastic) increase in cell number. LSFM allows for accurate and efficient determination of relevant quantitative morphological adipocyte parameters. The applied stereological methods and LSFM protocols are described in detail and can serve as a guideline for unbiased quantitative morphological analyses of adipocytes in other studies and species.


Assuntos
Adipócitos/patologia , Gordura Intra-Abdominal/patologia , Obesidade/patologia , Gordura Subcutânea/patologia , Animais , Contagem de Células/métodos , Tamanho Celular , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Gordura Intra-Abdominal/citologia , Microscopia de Fluorescência , Obesidade/etiologia , Gordura Subcutânea/citologia , Suínos , Porco Miniatura
9.
PLoS One ; 15(12): e0243462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296424

RESUMO

Rainbow trout (Oncorhynchus mykiss) are frequently used as experimental animals in ecotoxicological studies, in which they are experimentally exposed to defined concentrations of test substances, such as heavy metals, pesticides, or pharmaceuticals. Following exposure to a broad variety of aquatic pollutants, early morphologically detectable toxic effects often manifest in alterations of the gills. Suitable methods for an accurate and unbiased quantitative characterization of the type and the extent of morphological gill alterations are therefore essential prerequisites for recognition, objective evaluation and comparison of the severity of gill lesions. The aim of the present guidelines is to provide practicable, standardized and detailed protocols for the application of unbiased quantitative stereological analyses of relevant morphological parameters of the gills of rainbow trout. These gill parameters inter alia include the total volume of the primary and secondary gill lamellae, the surface area of the secondary gill lamellae epithelium (i.e., the respiratory surface) and the thickness of the diffusion barrier. The featured protocols are adapted to fish of frequently used body size classes (300-2000 g). They include well-established, conventional sampling methods, probes and test systems for unbiased quantitative stereological analyses of light- and electron microscopic 2-D gill sections, as well as the application of modern 3-D light sheet fluorescence microscopy (LSFM) of optically cleared gill samples as an innovative, fast and efficient quantitative morphological analysis approach. The methods shown here provide a basis for standardized and representative state-of-the-art quantitative morphological analyses of trout gills, ensuring the unbiasedness and reproducibility, as well as the intra- and inter-study comparability of analyses results. Their broad implementation will therefore significantly contribute to the reliable identification of no observed effect concentration (NOEC) limits in ecotoxicological studies and, moreover, to limit the number of experimental animals by reduction of unnecessary repetition of experiments.


Assuntos
Brânquias/anatomia & histologia , Oncorhynchus mykiss/anatomia & histologia , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Brânquias/efeitos dos fármacos , Brânquias/fisiologia , Brânquias/ultraestrutura , Masculino , Microscopia de Fluorescência , Oncorhynchus mykiss/fisiologia , Reprodutibilidade dos Testes , Poluentes Químicos da Água/química
10.
Anim Reprod ; 17(3): e20200064, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-33029223

RESUMO

The global prevalence of diabetes mellitus and other metabolic diseases is rapidly increasing. Animal models play pivotal roles in unravelling disease mechanisms and developing and testing therapeutic strategies. Rodents are the most widely used animal models but may have limitations in their resemblance to human disease mechanisms and phenotypes. Findings in rodent models are consequently often difficult to extrapolate to human clinical trials. To overcome this 'translational gap', we and other groups are developing porcine disease models. Pigs share many anatomical and physiological traits with humans and thus hold great promise as translational animal models. Importantly, the toolbox for genetic engineering of pigs is rapidly expanding. Human disease mechanisms and targets can therefore be reproduced in pigs on a molecular level, resulting in precise and predictive porcine (PPP) models. In this short review, we summarize our work on the development of genetically (pre)diabetic pig models and how they have been used to study disease mechanisms and test therapeutic strategies. This includes the generation of reporter pigs for studying beta-cell maturation and physiology. Furthermore, genetically engineered pigs are promising donors of pancreatic islets for xenotransplantation. In summary, genetically tailored pig models have become an important link in the chain of translational diabetes and metabolic research.

11.
Cell Tissue Res ; 380(2): 341-378, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31932949

RESUMO

The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.


Assuntos
Complicações do Diabetes/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Animais , Modelos Animais de Doenças , Humanos , Suínos
12.
Dis Model Mech ; 12(8)2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31308048

RESUMO

Alongside the obesity epidemic, the prevalence of maternal diabetes is rising worldwide, and adverse effects on fetal development and metabolic disturbances in the offspring's later life have been described. To clarify whether metabolic programming effects are due to mild maternal hyperglycemia without confounding obesity, we investigated wild-type offspring of INSC93S transgenic pigs, which are a novel genetically modified large-animal model expressing mutant insulin (INS) C93S in pancreatic ß-cells. This mutation results in impaired glucose tolerance, mild fasting hyperglycemia and insulin resistance during late pregnancy. Compared with offspring from wild-type sows, piglets from hyperglycemic mothers showed impaired glucose tolerance and insulin resistance (homeostatic model assessment of insulin resistance: +3-fold in males; +4.4-fold in females) prior to colostrum uptake. Targeted metabolomics in the fasting and insulin-stimulated state revealed distinct alterations in the plasma metabolic profile of piglets from hyperglycemic mothers. They showed increased levels of acylcarnitines, gluconeogenic precursors such as alanine, phospholipids (in particular lyso-phosphatidylcholines) and α-aminoadipic acid, a potential biomarker for type 2 diabetes. These observations indicate that mild gestational hyperglycemia can cause impaired glucose tolerance, insulin resistance and associated metabolic alterations in neonatal offspring of a large-animal model born at a developmental maturation status comparable to human babies.


Assuntos
Intolerância à Glucose/etiologia , Hiperglicemia/etiologia , Insulina/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Feminino , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Gravidez , Suínos
13.
Mol Metab ; 26: 30-44, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31221621

RESUMO

OBJECTIVE: The liver regulates the availability of insulin to other tissues and is the first line insulin response organ physiologically exposed to higher insulin concentrations than the periphery. Basal insulin during fasting inhibits hepatic gluconeogenesis and glycogenolysis, whereas postprandial insulin peaks stimulate glycogen synthesis. The molecular consequences of chronic insulin deficiency for the liver have not been studied systematically. METHODS: We analyzed liver samples of a genetically diabetic pig model (MIDY) and of wild-type (WT) littermate controls by RNA sequencing, proteomics, and targeted metabolomics/lipidomics. RESULTS: Cross-omics analyses revealed increased activities in amino acid metabolism, oxidation of fatty acids, ketogenesis, and gluconeogenesis in the MIDY samples. In particular, the concentrations of the ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) and of retinol dehydrogenase 16 (RDH16), which catalyzes the first step in retinoic acid biogenesis, were highly increased. Accordingly, elevated levels of retinoic acid, which stimulates the expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK1), were measured in the MIDY samples. In contrast, pathways related to extracellular matrix and inflammation/pathogen defense response were less active than in the WT samples. CONCLUSIONS: The first multi-omics study of a clinically relevant diabetic large animal model revealed molecular signatures and key drivers of functional alterations of the liver in insulin-deficient diabetes mellitus. The multi-omics data set provides a valuable resource for comparative analyses with other experimental or clinical data sets.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Modelos Animais de Doenças , Feminino , Insulina/deficiência , Metabolômica , Suínos
14.
Mol Metab ; 16: 180-190, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30017782

RESUMO

OBJECTIVE: The worldwide prevalence of obesity has increased to 10% in men and 15% in women and is associated with severe comorbidities such as diabetes, cancer, and cardiovascular disease. Animal models of obesity are central to experimental studies of disease mechanisms and therapeutic strategies. Diet-induced obesity (DIO) models in rodents have provided important insights into the pathophysiology of obesity and, in most instances, are the first in line for exploratory pharmacology studies. To deepen the relevance towards translation to human patients, we established a corresponding DIO model in Göttingen minipigs (GM). METHODS: Young adult female ovariectomized GM were fed a high-fat/high-energy diet for a period of 70 weeks. The ration was calculated to meet the requirements and maintain body weight (BW) of lean adult minipigs (L-GM group) or increased stepwise to achieve an obese state (DIO-GM group). Body composition, blood parameters and intravenous glucose tolerance were determined at regular intervals. A pilot chronic treatment trial with a GLP1 receptor agonist was conducted in DIO-GM. At the end of the study, the animals were necropsied and a biobank of selected tissues was established. RESULTS: DIO-GM developed severe subcutaneous and visceral adiposity (body fat >50% of body mass vs. 22% in L-GM), increased plasma cholesterol, triglyceride, and free fatty acid levels, insulin resistance (HOMA-IR >5 vs. 2 in L-GM), impaired glucose tolerance and increased heart rate when resting and active. However, fasting glucose concentrations stayed within normal range throughout the study. Treatment with a long-acting GLP1 receptor agonist revealed substantial reduction of food intake and body weight within four weeks, with increased drug sensitivity relative to observations in other DIO animal models. Extensive adipose tissue inflammation and adipocyte necrosis was observed in visceral, but not subcutaneous, adipose tissue of DIO-GM. CONCLUSIONS: The Munich DIO-GM model resembles hallmarks of the human metabolic syndrome with extensive adipose tissue inflammation and adipocyte necrosis reported for the first time. DIO-GM may be used for evaluating novel treatments of obesity and associated comorbidities. They may help to identify triggers and mechanisms of fat tissue inflammation and mechanisms preventing complete metabolic decompensation despite morbid obesity.


Assuntos
Tecido Adiposo/metabolismo , Síndrome Metabólica/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/imunologia , Animais , Glicemia/metabolismo , Composição Corporal , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Inflamação/metabolismo , Insulina/metabolismo , Resistência à Insulina , Obesidade Mórbida/metabolismo , Suínos , Porco Miniatura , Triglicerídeos
15.
Mol Metab ; 11: 113-128, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29678421

RESUMO

OBJECTIVE: Laron syndrome (LS) is a rare, autosomal recessive disorder in humans caused by loss-of-function mutations of the growth hormone receptor (GHR) gene. To establish a large animal model for LS, pigs with GHR knockout (KO) mutations were generated and characterized. METHODS: CRISPR/Cas9 technology was applied to mutate exon 3 of the GHR gene in porcine zygotes. Two heterozygous founder sows with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous F1 offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild-type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of liver, kidneys, and heart were disproportionately reduced, while the relative brain weight was almost doubled. GHR-KO pigs had a markedly increased percentage of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRS1 and PI3K. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased mTOR phosphorylation was observed in GHR-KO liver samples, and phosphorylation studies of downstream substrates suggested the activation of mainly mTOR complex 2. CONCLUSION: GHR-KO pigs resemble the pathophysiology of LS and are an interesting model for mechanistic studies and treatment trials.


Assuntos
Síndrome de Laron/genética , Fígado/metabolismo , Receptores da Somatotropina/genética , Transdução de Sinais , Adiposidade , Animais , Peso Corporal , Hormônio do Crescimento/sangue , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Janus Quinase 2/metabolismo , Síndrome de Laron/fisiopatologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Receptores da Somatotropina/deficiência , Fator de Transcrição STAT5/metabolismo , Suínos
16.
J Vis Exp ; (133)2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29578524

RESUMO

In translational medical research, porcine models have steadily become more popular. Considering the high value of individual animals, particularly of genetically modified pig models, and the often-limited number of available animals of these models, establishment of (biobank) collections of adequately processed tissue samples suited for a broad spectrum of subsequent analyses methods, including analyses not specified at the time point of sampling, represent meaningful approaches to take full advantage of the translational value of the model. With respect to the peculiarities of porcine anatomy, comprehensive guidelines have recently been established for standardized generation of representative, high-quality samples from different porcine organs and tissues. These guidelines are essential prerequisites for the reproducibility of results and their comparability between different studies and investigators. The recording of basic data, such as organ weights and volumes, the determination of the sampling locations and of the numbers of tissue samples to be generated, as well as their orientation, size, processing and trimming directions, are relevant factors determining the generalizability and usability of the specimen for molecular, qualitative, and quantitative morphological analyses. Here, an illustrative, practical, step-by-step demonstration of the most important techniques for generation of representative, multi-purpose biobank specimen from porcine tissues is presented. The methods described here include determination of organ/tissue volumes and densities, the application of a volume-weighted systematic random sampling procedure for parenchymal organs by point-counting, determination of the extent of tissue shrinkage related to histological embedding of samples, and generation of randomly oriented samples for quantitative stereological analyses, such as isotropic uniform random (IUR) sections generated by the "Orientator" and "Isector" methods, and vertical uniform random (VUR) sections.


Assuntos
Bancos de Espécimes Biológicos/estatística & dados numéricos , Manejo de Espécimes/métodos , Animais , Modelos Animais de Doenças , Reprodutibilidade dos Testes , Suínos
17.
PLoS One ; 13(2): e0192879, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444158

RESUMO

The accuracy of quantitative stereological analysis tools such as the (physical) disector method substantially depends on the precise determination of the thickness of the analyzed histological sections. One conventional method for measurement of histological section thickness is to re-embed the section of interest vertically to its original section plane. The section thickness is then measured in a subsequently prepared histological section of this orthogonally re-embedded sample. However, the orthogonal re-embedding (ORE) technique is quite work- and time-intensive and may produce inaccurate section thickness measurement values due to unintentional slightly oblique (non-orthogonal) positioning of the re-embedded sample-section. Here, an improved ORE method is presented, allowing for determination of the factual section plane angle of the re-embedded section, and correction of measured section thickness values for oblique (non-orthogonal) sectioning. For this, the analyzed section is mounted flat on a foil of known thickness (calibration foil) and both the section and the calibration foil are then vertically (re-)embedded. The section angle of the re-embedded section is then calculated from the deviation of the measured section thickness of the calibration foil and its factual thickness, using basic geometry. To find a practicable, fast, and accurate alternative to ORE, the suitability of spectral reflectance (SR) measurement for determination of plastic section thicknesses was evaluated. Using a commercially available optical reflectometer (F20, Filmetrics®, USA), the thicknesses of 0.5 µm thick semi-thin Epon (glycid ether)-sections and of 1-3 µm thick plastic sections (glycolmethacrylate/ methylmethacrylate, GMA/MMA), as regularly used in physical disector analyses, could precisely be measured within few seconds. Compared to the measured section thicknesses determined by ORE, SR measures displayed less than 1% deviation. Our results prove the applicability of SR to efficiently provide accurate section thickness measurements as a prerequisite for reliable estimates of dependent quantitative stereological parameters.


Assuntos
Técnicas Histológicas/métodos , Animais , Calibragem , Técnicas Histológicas/normas , Rim/anatomia & histologia , Camundongos , Microscopia/métodos , Microtomia/métodos , Inclusão em Parafina/métodos , Inclusão em Plástico/métodos , Análise Espectral/métodos
18.
Sci Rep ; 7: 42970, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220896

RESUMO

'Autosomal dominant tubulointerstitial kidney disease - UMOD' (ADTKD-UMOD) is caused by impaired maturation and secretion of mutant uromodulin (UMOD) in thick ascending limb of Henle loop (TAL) cells, resulting in endoplasmic reticulum (ER) stress and unfolded protein response (UPR). To gain insight into pathophysiology, we analysed proteome profiles of TAL-enriched outer renal medulla samples from ADTKD-UMOD and control mice by quantitative LC-MS/MS. In total, 212 differentially abundant proteins were identified. Numerous ER proteins, including BiP (HSPA5), phosphorylated eIF2α (EIF2S1), ATF4, ATF6 and CHOP (DDIT3), were increased abundant, consistent with UPR. The abundance of hypoxia-inducible proteins with stress survival functions, i.e. HYOU1, TXNDC5 and ERO1L, was also increased. TAL cells in ADTKD-UMOD showed a decreased proportion of mitochondria and reduced abundance of multiple mitochondrial proteins, associated with disturbed post-translational processing and activation of the mitochondrial transcription factor NRF1. Impaired fission of organelles, as suggested by reduced abundance of FIS1, may be another reason for disturbed biogenesis of mitochondria and peroxisomes. Reduced amounts of numerous proteins of the OXPHOS and citrate cycle pathways, and activation of the LKB1-AMPK-pathway, a sensor pathway of cellular energy deficits, suggest impaired energy homeostasis. In conclusion, our study revealed secondary mitochondrial dysfunction in ADTKD-UMOD.


Assuntos
Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Nefrite Intersticial/patologia , Uromodulina/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Metabolismo Energético , Medula Renal/metabolismo , Medula Renal/patologia , Medula Renal/ultraestrutura , Camundongos , Proteínas Mitocondriais/metabolismo , Nefrite Intersticial/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Peroxissomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/análise , Resposta a Proteínas não Dobradas , Uromodulina/metabolismo
19.
Sci Rep ; 6: 33362, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27634466

RESUMO

Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. We recently generated a novel genetically engineered pig model reflecting pathological hallmarks of human DMD better than the widely used mdx mouse. To get insight into the hierarchy of molecular derangements during DMD progression, we performed a proteome analysis of biceps femoris muscle samples from 2-day-old and 3-month-old DMD and wild-type (WT) pigs. The extent of proteome changes in DMD vs. WT muscle increased markedly with age, reflecting progression of the pathological changes. In 3-month-old DMD muscle, proteins related to muscle repair such as vimentin, nestin, desmin and tenascin C were found to be increased, whereas a large number of respiratory chain proteins were decreased in abundance in DMD muscle, indicating serious disturbances in aerobic energy production and a reduction of functional muscle tissue. The combination of proteome data for fiber type specific myosin heavy chain proteins and immunohistochemistry showed preferential degeneration of fast-twitch fiber types in DMD muscle. The stage-specific proteome changes detected in this large animal model of clinically severe muscular dystrophy provide novel molecular readouts for future treatment trials.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Proteoma/metabolismo , Envelhecimento/patologia , Animais , Modelos Animais de Doenças , Distrofina/deficiência , Distrofina/metabolismo , Imuno-Histoquímica , Proteínas Mitocondriais/metabolismo , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Proteínas Musculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Sus scrofa
20.
PLoS One ; 11(7): e0158977, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27420727

RESUMO

During nephrogenesis, POU domain class 3 transcription factor 3 (POU3F3 aka BRN1) is critically involved in development of distinct nephron segments, including the thick ascending limb of the loop of Henle (TAL). Deficiency of POU3F3 in knock-out mice leads to underdevelopment of the TAL, lack of differentiation of TAL cells, and perinatal death due to renal failure. Pou3f3L423P mutant mice, which were established in the Munich ENU Mouse Mutagenesis Project, carry a recessive point mutation in the homeobox domain of POU3F3. Homozygous Pou3f3L423P mutants are viable and fertile. The present study used functional, as well as qualitative and quantitative morphological analyses to characterize the renal phenotype of juvenile (12 days) and aged (60 weeks) homo- and heterozygous Pou3f3L423P mutant mice and age-matched wild-type controls. In both age groups, homozygous mutants vs. control mice displayed significantly smaller kidney volumes, decreased nephron numbers and mean glomerular volumes, smaller TAL volumes, as well as lower volume densities of the TAL in the kidney. No histological or ultrastructural lesions of TAL cells or glomerular cells were observed in homozygous mutant mice. Aged homozygous mutants displayed increased serum urea concentrations and reduced specific urine gravity, but no evidence of glomerular dysfunction. These results confirm the role of POU3F3 in development and function of the TAL and provide new evidence for its involvement in regulation of the nephron number in the kidney. Therefore, Pou3f3L423P mutant mice represent a valuable research model for further analyses of POU3F3 functions, or for nephrological studies examining the role of congenital low nephron numbers.


Assuntos
Rim/anormalidades , Rim/crescimento & desenvolvimento , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Fatores do Domínio POU/genética , Animais , Pressão Sanguínea , Peso Corporal , Feminino , Rim/metabolismo , Alça do Néfron/anormalidades , Alça do Néfron/crescimento & desenvolvimento , Alça do Néfron/metabolismo , Masculino , Camundongos , Néfrons/anormalidades , Néfrons/crescimento & desenvolvimento , Néfrons/metabolismo , Tamanho do Órgão , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...