Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 221: 121592, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076126

RESUMO

A method was developed for the determination of the nuclide-specific concentrations of U, Pu, Nd and Gd in two types of spent nuclear fuel (UOx and Gd-enriched). High-performance ion chromatography (HPIC) was used to separate the target elements from one another while sector-field inductively coupled plasma-mass spectrometry (SF-ICP-MS) was used for their determination relying on isotope dilution for calibration. In order to obtain the best possible precision for these isotope ratios extracted from the transient HPIC-SF-ICP-MS signals, the SF-ICP-MS data acquisition parameters were optimized and the most suitable method for calculating the isotope ratios from the transient signals was identified. The point-by-point (PbP), linear regression slope (LRS) and peak area integration (PAI) approaches were compared in the latter context. It was found that data acquisition in the flat centre of the spectral flat top peak using a mass window of 25%, a dwell time of 10 ms and 20 samples per peak, while using PAI for isotope ratio calculation, gave the best precision on the isotope ratios extracted from the HPIC-SF-ICP-MS transient signals. These parameters were used in the determination of the nuclide-specific mass fractions of Pu, Nd and Gd in two types of spent nuclear fuel using isotope dilution HPIC-SF-ICP-MS. For U, which was present at a higher concentration, the element fraction was collected and analyzed off-line after dilution. For the other target elements, an online approach was used. An uncertainty budget estimation was made using the bottom-up approach for the resulting mass fractions, and the accuracy and precision obtained when using isotope dilution HPIC-SF-ICP-MS were compared with those obtained with the routinely used techniques, isotope dilution TIMS & alpha spectrometry (an ISO 17025 accredited method).

2.
J Chromatogr A ; 1617: 460839, 2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31948721

RESUMO

High-pressure ion chromatography (HPIC) was coupled with sector field inductively coupled plasma-mass spectrometry (SF-ICP-MS) to separate plutonium (Pu), uranium (U), neodymium (Nd) and gadolinium (Gd) nuclides from isobaric nuclides and to quantify them with high sensitivity. In this study, mixed bed ion exchange columns CG5A and CS5A were used, from which Pu and U were eluted first using 1 M nitric acid. The lanthanides were then separated using a gradient of 0.1-0.15 M oxalic acid with the pH adjusted to 4.5. The HPIC-SF-ICP-MS method was validated using different sample matrices, i.e. spent nuclear fuel and soil. The method was found to be repeatable and gave rise to transient signals suitable for quantification of nuclide-specific concentrations using external calibration. In terms of accuracy, the HPIC-SF-ICP-MS measurement results were in good agreement with those obtained using thermal ionization mass spectrometry (TIMS). Finally, the method provides an improvement in sample throughput (≤60 minutes per sample) and reduces exposure of the operator to radiation compared to off-line gravitational chromatography followed by TIMS.


Assuntos
Cromatografia por Troca Iônica/métodos , Elementos da Série dos Lantanídeos/análise , Espectrometria de Massas/métodos , Plutônio/análise , Urânio/análise , Calibragem , Cromatografia por Troca Iônica/normas , Espectrometria de Massas/normas , Poluentes Radioativos do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA