Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(23): 8077-8091, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37232395

RESUMO

The synthesis of two chiral bulky alkoxide pro-ligands, 1-adamantyl-tert-butylphenylmethanol HOCAdtBuPh and 1-adamantylmethylphenylmethanol HOCAdMePh, is reported and their coordination chemistry with magnesium(II) is described and compared with the coordination chemistry of the previously reported achiral bulky alkoxide pro-ligand HOCtBu2Ph. Treatment of n-butyl-sec-butylmagnesium with two equivalents of the racemic mixture of HOCAdtBuPh led selectively to the formation of the mononuclear bis(alkoxide) complex Mg(OCAdtBuPh)2(THF)2. 1H NMR spectroscopy and X-ray crystallography suggested the selective formation of the C2-symmetric homochiral diastereomer Mg(OCRAdtBuPh)2(THF)2/Mg(OCSAdtBuPh)2(THF)2. In contrast, the less sterically encumbered HOCAdMePh led to the formation of dinuclear products indicating only partial alkyl group substitution. The mononuclear Mg(OCAdtBuPh)2(THF)2 complex was tested as a catalyst in different reactions for the synthesis of polyesters. In the ROP of lactide, Mg(OCAdtBuPh)2(THF)2 demonstrated very high activity, higher than that shown by Mg(OCtBu2Ph)2(THF)2, although with moderate control degrees. Both Mg(OCAdtBuPh)2(THF)2 and Mg(OCtBu2Ph)2(THF)2 were found to be very effective in the polymerization of macrolactones such as ω-pentadecalactone (PDL) and ω-6-hexadecenlactone (HDL) also under mild reaction conditions that are generally prohibitive for these substrates. The same catalysts demonstrated efficient ring-opening copolymerization (ROCOP) of propylene oxide (PO) and maleic anhydride (MA) to produce poly(propylene maleate).

2.
J Inorg Biochem ; 230: 111744, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35151097

RESUMO

Molybdenum in redox non-innocent ligand environments features prominently in biological inorganic systems. While Holm and coworkers, along with many other researchers, have thoroughly investigated formally high-oxidation-state molybdenum (Mo(IV)-Mo(VI)) ligated by dithiolenes, less is known about molybdenum in other formal oxidation states and/or different redox-active ligand environments. This work focuses on the investigation of low-valent molybdenum in four different redox non-innocent nitrogen ligand type environments (mononucleating and dinucleating iminopyridine, mononucleating and dinucleating bis(imino)pyridine). The reaction of iminopyridine N-(2,6-diisopropylphenyl)-1-(pyridin-2-yl)methanimine (L1) with Mo(CO)3(NCMe)3 produced Mo(L1)(CO)3(NCMe). Mo(L1)(CO)3(NCMe) undergoes transformation to Mo(L1)(CO)4 upon treatment with CS2 or prolonged stirring in dichloromethane. The reaction of the open-chain dinucleating bis(iminopyridine) ligand N,N'-(2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene-4,5-diyl)bis(1-(pyridin-2-yl)methanimine) (L2) similarly produced an hexacarbonyl complex Mo2(L2)(CO)6(NCMe)2 which also underwent transformation to the octacarbonyl Mo2(L2)(CO)8. Both complexes featured anti-parallel geometry of the chelating units. The oxidation of Mo(L1)(CO)3(NCMe) with I2 resulted in Mo(L1)(CO)3I2. The reaction of mononucleating potentially tridentate bis(imino)pyridine ligand (L3) (N-mesityl-1-(6-((E)-(mesitylimino)methyl)pyridin-2-yl)methanimine) with both Mo(CO)3(NCMe)3 and Mo(CO)4(NCMe)2 produced complexes Mo(L3)(CO)3(NCMe) and Mo(L3)(CO)4 in which L3 was coordinated in a bidentate fashion, with one imino sidearm unbound. The reaction of dinucleating macrocyclic di(bis(imino)pyridine) analogue (L4) led to the similar chemistry of Mo2(L4)(CO)6(NCMe)2 and Mo2(L4)(CO)8 complexes. Treatment of Mo(L3)(CO)3(NCMe) with I2 formed a mono(carbonyl) complex Mo(L3)(CO)I2 in which molybdenum was formally oxidized and L3 underwent coordination mode change to tridentate. The electronic structures of formally Mo(0) complexes in iminopyridine and bis(imino)pyridine ligand environments were investigated by density functional theory calculations.


Assuntos
Molibdênio , Piridinas , Cristalografia por Raios X , Eletrônica , Ligantes , Molibdênio/química , Piridinas/química
3.
Dalton Trans ; 50(7): 2501-2509, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33514951

RESUMO

Reaction of LiOCtBu2Ph with TlPF6 forms the dimeric Tl2(OCtBu2Ph)2 complex, a rare example of a homoleptic thallium alkoxide complex demonstrating formally two-coordinate metal centers. Characterization of Tl2(OCtBu2Ph)2 by 1H and 13C NMR spectroscopy and X-ray crystallography reveals the presence of two isomers differing by the mutual conformation of the alkoxide ligands, and by the planarity of the central Tl-O-Tl-O plane. Tl2(OCtBu2Ph)2 serves as a convenient precursor to the formation of old and new [M(OCtBu2Ph)n] complexes (M = Cr, Fe, Cu, Zn), including a rare example of T-shaped Zn(OCtBu2Ph)2(THF) complex, which could not be previously synthesized using more conventional LiOR/HOR precursors. The reaction of [Ru(cymene)Cl2]2 with Tl2(OCtBu2Ph)2 results in the formation of a ruthenium(ii) alkoxide complex. For ruthenium, the initial coordination of the alkoxide triggers C-H activation at the ortho-H of [OCtBu2Ph] which results in its bidentate coordination. In addition to Tl2(OCtBu2Ph)2, related Tl2(OCtBu2(3,5-Me2C6H3))2 was also synthesized, characterized, and shown to exhibit similar reactivity with iron and ruthenium precursors. Synthetic, structural, and spectroscopic characterizations are presented.

4.
Dalton Trans ; 49(8): 2715-2723, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32051999

RESUMO

Synthesis of a new mononuclear magnesium complex with a bulky bis(alkoxide) ligand environment and its reactivity in ring-opening polymerization (ROP) and ring-opening copolymerization (ROCOP) are reported. Reaction of n-butyl-sec-butylmagnesium with two equivalents of HOR (HOR = di-tert-butylphenylmethanol, HOCtBu2Ph) formed Mg(OR)2(THF)2. The reaction proceeded via the Mg(OR)(sec-Bu)(THF)2 intermediate that was independently synthesized by treating n-butyl-sec-butylmagnesium with one equivalent of HOR. Mg(OR)2(THF)2 led to active albeit not well-controlled ROP of rac-lactide. In contrast, well-controlled ROCOP of epoxides with cyclic anhydrides was observed, including efficient and alternating copolymerization of phthalic anhydride with cyclohexene oxide as well as rare copolymerization of phthalic anhydride with limonene oxide and terpolymerization of phthalic anhydride with both cyclohexene oxide and limonene oxide. In addition, novel copolymerization of dihydrocoumarin with limonene oxide is described.

5.
Chem Commun (Camb) ; 55(72): 10780-10783, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31432810

RESUMO

New chelating bis(alkoxide) ligand H2[OO]Ph and its iron(ii) complex Fe[OO]Ph(THF)2 are described. The coordination of the ligand to the metal center is reminiscent of the coordination of two monodentate alkoxides in previously reported Fe(OR)2(THF)2 species. Fe[OO]Ph(THF)2 catalyzes selective and efficient dimerization of non-bulky aryl nitrenes to yield the corresponding azoarenes.

6.
Inorg Chem ; 57(15): 9425-9438, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30015481

RESUMO

The reaction of HOR' (OR' = di-t-butyl-(3,5-diphenylphenyl)methoxide) with an iron(II) amide precursor forms the iron(II) bis(alkoxide) complex Fe(OR')2(THF)2 (2). 2 (5-10 mol %) serves as a catalyst for the conversion of aryl azides into the corresponding azoarenes. The highest yields are observed for aryl azides featuring two ortho substituents; other substitution patterns in the aryl azide precursor lead to moderate or low yields. The reaction of 2 with stoichiometric amounts (2 equiv) of the corresponding aryl azide shows the formation of azoarenes as the only organic products for the bulkier aryl azides (Ar = mesityl, 2,6-diethylphenyl). In contrast, formation of tetrazene complexes Fe(OR')2(ArNNNNAr) (3-6) is observed for the less bulky aryl azides (Ar = phenyl, 4-methylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl). The electronic structure of selected tetrazene complexes was probed by spectroscopy (field-dependent 57Fe Mössbauer and high-frequency EPR) and density functional theory calculations. These studies revealed that Fe(OR')2(ArNNNNAr) complexes contain high-spin ( S = 5/2) iron(III) centers exchange-coupled to tetrazene radical anions. Tetrazene complexes Fe(OR')2(ArNNNNAr) produce the corresponding azoarenes (ArNNAr) upon heating. Treatment of a tetrazene complex Fe(OR')2(ArNNNNAr) with a different azide (N3Ar') produces all three possible products ArNNAr, ArNNAr', and Ar'NNAr'. These experiments and quantum mechanics/molecular mechanics calculations exploring the reaction mechanism suggest that the tetrazene functionality serves as a masked form of the reactive iron mono(imido) species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...