Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 339: 498-505, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662584

RESUMO

Drug delivery systems that release hydrophobic drugs with zero-order kinetics remain rare and are often complicated to use. In this work, we present a gellified emulsion (emulgel) that comprises oil droplets of a hydrolyzable oil entrapped in a hydrogel. In the oil, we incorporate various hydrophobic drugs and, because the oil hydrolyzes with zero-order kinetics, the release of the drugs is also linear. We tune the release period from three hours to 50 h by varying the initial oil concentration. We show that the release rate is tunable by varying the initial drug concentration. Our quantitative understanding of the system allows for predicting the drug release kinetics once the drug's partition coefficient between the oil and the aqueous phase is known. Finally, we show that our drug delivery system is fully functional after storing it at -20 °C. Cell viability studies show that the hydrolyzable oil and its hydrolysis product are non-toxic under the employed conditions. With its simplicity and versatility, our system is a promising platform for the zero-order release of the drug.


Assuntos
Óleos , Água , Liberação Controlada de Fármacos , Emulsões , Interações Hidrofóbicas e Hidrofílicas
2.
J Am Chem Soc ; 142(33): 14142-14149, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32787245

RESUMO

In living systems, fuel-driven assembly is ubiquitous, and examples include the formation of microtubules or actin bundles. These structures have inspired researchers to develop synthetic counterparts, leading to exciting new behaviors in man-made structures. However, most of these examples are serendipitous discoveries because clear design rules do not yet exist. In this work, we show design rules to drive peptide self-assembly regulated by a fuel-driven reaction cycle. We demonstrate that, by altering the ratio of attractive to repulsive interactions between peptides, the behavior can be toggled between no assembly, fuel-driven dissipative self-assembly, and a state in which the system is permanently assembled. These rules can be generalized for other peptide sequences. In addition, our finding is explained in the context of the energy landscapes of self-assembly. We anticipate that our design rules can further aid the field and help the development of autonomous materials with life-like properties.


Assuntos
Peptídeos/síntese química , Estrutura Molecular , Peptídeos/química
3.
J Am Chem Soc ; 141(25): 9872-9878, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194525

RESUMO

We describe the self-assembly of gold and iron oxide nanoparticles regulated by a chemical reaction cycle that hydrolyzes a carbodiimide-based fuel. In a reaction with the chemical fuel, the nanoparticles are chemically activated to a state that favors assembling into clusters. The activated state is metastable and decays to the original precursor reversing the assembly. The dynamic interplay of activation and deactivation results in a material of which the behavior is regulated by the amount of fuel added to the system; they either did not assemble, assembled transiently, or assembled permanently in kinetically trapped clusters. Because of the irreversibility of the kinetically trapped clusters, we found that the behavior of the self-assembly was prone to hysteresis effects. The final state of the system in the energy landscape depended on the pathway of preparation. For example, when a large amount of fuel was added at once, the material would end up kinetically trapped in a local minimum. When the same amount of fuel was added in small batches with sufficient time for the system to re-equilibrate, the final state would be the global minimum. A better understanding of pathway complexity in the energy landscape is crucial for the development of fuel-driven supramolecular materials.

4.
Angew Chem Int Ed Engl ; 57(44): 14608-14612, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30040877

RESUMO

Solutions of silicon nanocrystals (SiNCs) are used in a diverse range of applications because of their tunable photoluminescence, biocompatibility, and the abundance of Si. In dissipative supramolecular materials, self-assembly of molecules or nanoparticles is driven by a chemical reaction network that irreversible consumes fuel. The properties of the emerging structures are controlled by the kinetics of the underlying chemical reaction network. Herein, we demonstrate the dissipative self-assembly of photoluminescent SiNCs driven by a chemical fuel. A chemical reaction induces self-assembly of the water-soluble SiNCs. However, the assemblies are transient, and when the chemical reaction network runs out of fuel, the SiNCs disassemble. The lifetime of the assemblies is controlled by the amount of fuel added. As an application of the transient supramolecular material, we demonstrate that the platform can be used to control the delayed uptake of the nanocrystals by mammalian cells.


Assuntos
Nanopartículas/química , Silício/química , Cinética , Luminescência
5.
Nat Commun ; 9(1): 2044, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795292

RESUMO

Life is a dissipative nonequilibrium structure that requires constant consumption of energy to sustain itself. How such an unstable state could have selected from an abiotic pool of molecules remains a mystery. Here we show that liquid phase-separation offers a mechanism for the selection of dissipative products from a library of reacting molecules. We bring a set of primitive carboxylic acids out-of-equilibrium by addition of high-energy condensing agents. The resulting anhydrides are transiently present before deactivation via hydrolysis. We find the anhydrides that phase-separate into droplets to protect themselves from hydrolysis and to be more persistent than non-assembling ones. Thus, after several starvation-refueling cycles, the library self-selects the phase-separating anhydrides. We observe that the self-selection mechanism is more effective when the library is brought out-of-equilibrium by periodic addition of batches as opposed to feeding it continuously. Our results suggest that phase-separation offers a selection mechanism for energy dissipating assemblies.

6.
Soft Matter ; 14(23): 4852-4859, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29845136

RESUMO

Dissipative self-assembly is a process in which energy-consuming chemical reaction networks drive the assembly of molecules. Prominent examples from biology include the GTP-fueled microtubule and ATP-driven actin assembly. Pattern formation and oscillatory behavior are some of the unique properties of the emerging assemblies. While artificial counterparts exist, researchers have not observed such complex responses. One reason for the missing complexity is the lack of feedback mechanisms of the assemblies on their chemical reaction network. In this work, we describe the dissipative self-assembly of colloids that protect the hydrolysis of their building blocks. The mechanism of inhibition is generalized and explored for other building blocks. We show that we can tune the level of inhibition by the assemblies. Finally, we show that the robustness of the assemblies towards starvation is affected by the degree of inhibition.

7.
Nat Commun ; 8: 15895, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28719591

RESUMO

Many biological materials exist in non-equilibrium states driven by the irreversible consumption of high-energy molecules like ATP or GTP. These energy-dissipating structures are governed by kinetics and are thus endowed with unique properties including spatiotemporal control over their presence. Here we show man-made equivalents of materials driven by the consumption of high-energy molecules and explore their unique properties. A chemical reaction network converts dicarboxylates into metastable anhydrides driven by the irreversible consumption of carbodiimide fuels. The anhydrides hydrolyse rapidly to the original dicarboxylates and are designed to assemble into hydrophobic colloids, hydrogels or inks. The spatiotemporal control over the formation and degradation of materials allows for the development of colloids that release hydrophobic contents in a predictable fashion, temporary self-erasing inks and transient hydrogels. Moreover, we show that each material can be re-used for several cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...