Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pediatr Hematol Oncol ; 45(5): e609-e612, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278578

RESUMO

Germline pathogenic variants in DDX41 have recently been described in association with myelodysplastic syndrome and acute myeloid leukemia in older populations. However, this pathogenic variant has rarely been described in the pediatric population. This report represents a novel case of newly diagnosed myeloid neoplasm in a 9-year-old patient presenting with essential thrombocythemia-like features and was proven to have JAK2 V617F pathogenic variant, constitutional balanced paracentric inversion on q-arm of chromosome 7, and a germline heterozygous DDX41 pathogenic variant. This is the first reported case of a pediatric patient who presented with the constellation of these clinical features, histologic findings, and genetic alterations.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Trombocitemia Essencial , Criança , Humanos , RNA Helicases DEAD-box/genética , Células Germinativas/patologia , Mutação em Linhagem Germinativa , Janus Quinase 2/genética , Leucemia Mieloide Aguda/patologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/complicações , Trombocitemia Essencial/complicações
2.
Life (Basel) ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295101

RESUMO

(1) Background: Cryptococcus neoformans is mostly known for causing meningitis, with or without disseminated disease. (2) Case presentation: An immunocompromised 75-year-old gentleman presented post renal transplant with generalized weakness, altered mental status, hypoxemia, and hyponatremia, and was found to have disseminated cryptococcal infection. After an initial improvement, the patient became suddenly hypotensive, and passed away soon after. The autopsy revealed widespread cryptococcal involvement, with the most severely affected organs being the brain, lungs, pancreas, adrenal glands, and spleen. The pancreas and one of the adrenal glands revealed diffuse granulomatous cryptococcal infection, with large areas of necrosis. The spleen also showed a large area of cryptococcal necrosis. In addition, the patient had chylous ascites, without histologically identifiable organisms. (3) Conclusions: This is a rare case of disseminated cryptococcal infection with severe necrotizing adrenalitis and pancreatitis, in addition to significant spleen, lung, and central nervous system involvement. The early recognition and treatment of the adrenal gland and pancreas cryptococcosis with surgical interventions may lead to better outcomes in affected patients. Furthermore, steroid treatment and diabetes mellitus may be risk factors for adrenal gland involvement. Additionally, clinicians should keep cryptococcal infection in their differential diagnosis for isolated adrenal gland and pancreas lesions.

3.
Life (Basel) ; 11(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947882

RESUMO

Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.

4.
Expert Opin Drug Discov ; 14(4): 365-378, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30793996

RESUMO

INTRODUCTION: Depression is a highly debilitating psychiatric disorder that affects the global population and causes severe disabilities and suicide. Depression pathogenesis remains poorly understood, and the disorder is often treatment-resistant and recurrent, necessitating the development of novel therapies, models and concepts in this field. Areas covered: Animal models are indispensable for translational biological psychiatry, and markedly advance the study of depression. Novel approaches continuously emerge that may help untangle the disorder heterogeneity and unclear categories of disease classification systems. Some of these approaches include widening the spectrum of model species used for translational research, using a broader range of test paradigms, exploring new pathogenic pathways and biomarkers, and focusing more closely on processes beyond neural cells (e.g. glial, inflammatory and metabolic deficits). Expert opinion: Dividing the core symptoms into easily translatable, evolutionarily conserved phenotypes is an effective way to reevaluate current depression modeling. Conceptually novel approaches based on the endophenotype paradigm, cross-species trait genetics and 'domain interplay concept', as well as using a wider spectrum of model organisms and target systems will enhance experimental modeling of depression and antidepressant drug discovery.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Descoberta de Drogas/métodos , Animais , Transtorno Depressivo Maior/fisiopatologia , Modelos Animais de Doenças , Desenvolvimento de Medicamentos/métodos , Humanos , Pesquisa Translacional Biomédica/métodos
5.
Pharmacol Res ; 141: 602-608, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30708051

RESUMO

The zebrafish (Danio rerio) is increasingly utilized as a powerful new model organism in neurobehavioral research. Aggression is a common symptom of many CNS disorders, has some genetic determinants and can be modulated pharmacologically in humans and animal model species. Mounting evidence suggests zebrafish as a useful tool to study neurobiology of aggression, and its pharmacological and genetic regulation. Here, we discuss mechanisms of zebrafish aggression and their pharmacological, pharmacogenetic and pharmacogenomic models, as well as recent developments and existing challenges in this field. We also emphasize the growing utility of zebrafish models in translational neuropharmacological research of aggression, fostering future discoveries of potential therapeutic agents for aggressive behavior.


Assuntos
Agressão , Doenças do Sistema Nervoso Central/genética , Modelos Animais de Doenças , Peixe-Zebra/genética , Agressão/efeitos dos fármacos , Animais , Fármacos do Sistema Nervoso Central/farmacologia , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/patologia , Neurofarmacologia , Farmacogenética , Pesquisa Translacional Biomédica , Peixe-Zebra/fisiologia
6.
ACS Chem Neurosci ; 10(5): 2176-2185, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30664352

RESUMO

Arecoline is a naturally occurring psychoactive alkaloid from areca (betel) nuts of the areca palm ( Areca catechu) endemic to South and Southeast Asia. A partial agonist of nicotinic and muscarinic acetylcholine receptors, arecoline evokes multiple effects on the central nervous system (CNS), including stimulation, alertness, elation, and anxiolysis. Like nicotine, arecoline also evokes addiction and withdrawal symptoms (upon discontinuation). The abuse of areca nuts is widespread, with over 600 million users globally. The importance of arecoline is further supported by its being the world's fourth most commonly used human psychoactive substance (after alcohol, nicotine, and caffeine). Here, we discuss neuropharmacology, pharmacokinetics, and metabolism of arecoline, as well as social and historical aspects of its use and abuse. Paralleling clinical findings, we also evaluate its effects in animal models and outline future clinical and preclinical CNS research in this field.


Assuntos
Arecolina , Transtornos Relacionados ao Uso de Substâncias , Animais , Humanos
7.
Artigo em Inglês | MEDLINE | ID: mdl-30476525

RESUMO

Diabetes mellitus (DM) is a common metabolic disorder that affects multiple organ systems. DM also affects brain processes, contributing to various CNS disorders, including depression, anxiety and Alzheimer's disease. Despite active research in humans, rodent models and in-vitro systems, the pathogenetic link between DM and brain disorders remains poorly understood. Novel translational models and new model organisms are therefore essential to more fully study the impact of DM on CNS. The zebrafish (Danio rerio) is a powerful novel model species to study metabolic and CNS disorders. Here, we discuss how DM alters brain functions and behavior in zebrafish, and summarize their translational relevance to studying DM-related CNS pathogenesis in humans. We recognize the growing utility of zebrafish models in translational DM research, as they continue to improve our understanding of different brain pathologies associated with DM, and may foster the discovery of drugs that prevent or treat these diseases.


Assuntos
Doenças do Sistema Nervoso Central , Diabetes Mellitus , Modelos Animais de Doenças , Peixe-Zebra , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiopatologia , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/fisiopatologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Humanos
8.
ACS Chem Neurosci ; 10(5): 2144-2159, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30566832

RESUMO

Anticholinergic drugs based on tropane alkaloids, including atropine, scopolamine, and hyoscyamine, have been used for various medicinal and toxic purposes for millennia. These drugs are competitive antagonists of acetylcholine muscarinic (M-) receptors that potently modulate the central nervous system (CNS). Currently used clinically to treat vomiting, nausea, and bradycardia, as well as alongside other anesthetics to avoid vagal inhibition, these drugs also evoke potent psychotropic effects, including characteristic delirium-like states with hallucinations, altered mood, and cognitive deficits. Given the growing clinical importance of anti-M deliriant hallucinogens, here we discuss their use and abuse, clinical importance, and the growing value in preclinical (experimental) animal models relevant to modeling CNS functions and dysfunctions.


Assuntos
Atropina/efeitos adversos , Antagonistas Colinérgicos/efeitos adversos , Alucinações/induzido quimicamente , Escopolamina/efeitos adversos , Animais , Atropina/uso terapêutico , Antagonistas Colinérgicos/uso terapêutico , Humanos , Náusea/tratamento farmacológico , Escopolamina/uso terapêutico , Vômito/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...