Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 11026-11033, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38010147

RESUMO

The demand for large electromechanical performance in lead-free polycrystalline piezoelectric thin films is driven by the need for compact, high-performance microelectromechanical systems (MEMS) based devices operating at low voltages. Here we significantly enhance the electromechanical response in a polycrystalline lead-free oxide thin film by utilizing lattice-defect-induced structural inhomogeneities. Unlike prior observations in mismatched epitaxial films with limited low-frequency enhancements, we achieve large electromechanical strain in a polycrystalline (K,Na)NbO3 film integrated on silicon. This is achieved by inducing self-assembled Nb-rich planar faults with a nonstoichiometric composition. The film exhibits an effective piezoelectric coefficient of 565 pm V-1 at 1 kHz, surpassing those of lead-based counterparts. Notably, lattice defect growth is substrate-independent, and the large electromechanical response is extended to even higher frequencies in a polycrystalline film. Improved properties arise from unique lattice defect morphology and frequency-dependent relaxation behavior, offering a new route to remarkable electromechanical response in polycrystalline thin films.

2.
Sci Adv ; 9(42): eadj0904, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37851810

RESUMO

A continuing challenge in atomic resolution microscopy is to identify significant structural motifs and their assembly rules in synthesized materials with limited observations. Here, we propose and validate a simple and effective hybrid generative model capable of predicting unseen domain boundaries in a potassium sodium niobate thin film from only a small number of observations, without expensive first-principles calculations or atomistic simulations of domain growth. Our results demonstrate that complicated domain boundary structures spanning 1 to 100 nanometers can arise from simple interpretable local rules played out probabilistically. We also found previously unobserved, significant, tileable boundary motifs that may affect the piezoelectric response of the material system, and evidence that our system creates domain boundaries with the highest configurational entropy. More broadly, our work shows that simple yet interpretable machine learning models could pave the way to describe and understand the nature and origin of disorder in complex materials, therefore improving functional materials design.

6.
Adv Sci (Weinh) ; 10(27): e2304038, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37507832

RESUMO

High entropy oxides (HEOs), based on the incorporation of multiple-principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto-electronic states. Epitaxial (Co0.2 Cr0.2 Fe0.2 Mn0.2 Ni0.2 )3 O4 -HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel-HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual-phase coexistence appears as a universal phenomenon in (Co0.2 Cr0.2 Fe0.2 Mn0.2 Ni0.2 )3 O4 epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain-induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out-of-plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze-like magnetic domain structure, indicating the perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine-tuning properties in oxides.

7.
Small ; 19(4): e2205137, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36433826

RESUMO

Defects in ferroelectric materials have many implications on the material properties which, in most cases, are detrimental. However, engineering these defects can also create opportunities for property enhancement as well as for tailoring novel functionalities. To purposely manipulate these defects, a thorough knowledge of their spatial atomic arrangement, as well as elastic and electrostatic interactions with the surrounding lattice, is highly crucial. In this work, analytical scanning transmission electron microscopy (STEM) is used to reveal a diverse range of multidimensional crystalline defects (point, line, planar, and secondary phase) in (K,Na)NbO3 (KNN) ferroelectric thin films. The atomic-scale analyses of the defect-lattice interactions suggest strong elastic and electrostatic couplings which vary among the individual defects and correspondingly affect the electric polarization. In particular, the observed polarization orientations are correlated with lattice relaxations as well as strain gradients and can strongly impact the properties of the ferroelectric films. The knowledge and understanding obtained in this study open a new avenue for the improvement of properties as well as the discovery of defect-based functionalities in alkali niobate thin films.

8.
Nat Commun ; 13(1): 3922, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798745

RESUMO

A large electromechanical response in ferroelectrics is highly desirable for developing high-performance sensors and actuators. Enhanced electromechanical coupling in ferroelectrics is usually obtained at morphotropic phase boundaries requiring stoichiometric control of complex compositions. Recently it was shown that giant piezoelectricity can be obtained in films with nanopillar structures. Here, we elucidate its origin in terms of atomic structure and demonstrate a different system with a greatly enhanced response. This is in non-stoichiometric potassium sodium niobate epitaxial thin films with a high density of self-assembled planar faults. A giant piezoelectric coefficient of ∼1900 picometer per volt is demonstrated at 1 kHz, which is almost double the highest ever reported effective piezoelectric response in any existing thin films. The large oxygen octahedral distortions and the coupling between the structural distortion and polarization orientation mediated by charge redistribution at the planar faults enable the giant electric-field-induced strain. Our findings demonstrate an important mechanism for realizing the unprecedentedly giant electromechanical coupling and can be extended to many other material functions by engineering lattice faults in non-stoichiometric compositions.

9.
Nat Commun ; 13(1): 3037, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650181

RESUMO

Realization of high-density and reliable resistive random access memories based on two-dimensional semiconductors is crucial toward their development in next-generation information storage and neuromorphic computing. Here, wafer-scale integration of solution-processed two-dimensional MoS2 memristor arrays are reported. The MoS2 memristors achieve excellent endurance, long memory retention, low device variations, and high analog on/off ratio with linear conductance update characteristics. The two-dimensional nanosheets appear to enable a unique way to modulate switching characteristics through the inter-flake sulfur vacancies diffusion, which can be controlled by the flake size distribution. Furthermore, the MNIST handwritten digits recognition shows that the MoS2 memristors can operate with a high accuracy of >98.02%, which demonstrates its feasibility for future analog memory applications. Finally, a monolithic three-dimensional memory cube has been demonstrated by stacking the two-dimensional MoS2 layers, paving the way for the implementation of two memristor into high-density neuromorphic computing system.

10.
Adv Mater ; 34(33): e2109449, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35751473

RESUMO

Van der Waals materials are attracting great attention in the field of spintronics due to their novel physical properties. For example, they are utilized as spin-current generating materials in spin-orbit torque (SOT) devices, which offers an electrical way to control the magnetic state and is promising for future low-power electronics. However, SOTs have mostly been demonstrated in vdW materials with strong spin-orbit coupling (SOC). Here, the observation of a current-induced SOT in the h-BN/SrRuO3 bilayer structure is reported, where the vdW material (h-BN) is an insulator with negligible SOC. Importantly, this SOT is strong enough to induce the switching of the perpendicular magnetization in SrRuO3 . First-principles calculations suggest a giant Rashba effect at the interface between vdW material and SrRuO3 (110)pc thin film, which leads to the observed SOT based on a simplified tight-binding model. Furthermore, it is demonstrated that the current-induced magnetization switching can be modulated by the electric field. This study paves the way for exploring the current-induced SOT and magnetization switching by integrating vdW materials with ferromagnets.

11.
Adv Mater ; 34(25): e2106845, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34799944

RESUMO

Piezoelectric materials are known to mankind for more than a century, with numerous advancements made in both scientific understandings and practical applications. In the last two decades, in particular, the research on piezoelectrics has largely been driven by the constantly changing technological demand, and the drive toward a sustainable society. Hence, environmental-friendly "lead-free piezoelectrics" have emerged in the anticipation of replacing lead-based counterparts with at least comparable performance. However, there are still obstacles to be overcome for realizing this objective, while the efforts in this direction already seem to culminate. Therefore, novel structural strategies need to be designed to address these issues and for further breakthrough in this field. Here, various strategies to enhance piezoelectric properties in lead-free systems with fundamental and historical context, and from atomic to macroscopic scale, are explored. The main challenges currently faced in the transition from lead-based to lead-free piezoelectrics are identified and key milestones for future research in this field are suggested. These include: i) decoding the fundamental mechanisms; ii) large temperature-stable piezoresponse; and iii) fabrication-friendly and tailorable composition. Strategic insights and general guidelines for the synergistic design of new piezoelectric materials for obtaining a large piezoelectric response are also provided.

12.
ACS Nano ; 15(8): 12975-12987, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34370437

RESUMO

Electrolyte-accessibly porous yet densely packed MXene composite electrodes with high ion-accessible surface and rapid ion transport rate have shown exceptional promise for high-volumetric-performance supercapacitors (SCs), but they are largely limited by the insufficient rate capability and poor electrochemical cyclability, in association with the instability in mechanical robustness of the porous network structures. Taking advantage of chemical bonding design, herein a black phosphorus (BP)@MXene compact film of 3D porous network structure is successfully made by in situ growth of BP nanoparticles on crumbled MXene flakes. The strong interfacial interaction (Ti-O-P bonds) formed at the BP-MXene interfaces not only enhances the atomic charge polarization in the BP-MXene heterostructures, leading to efficient interfacial electron transport, but also stabilizes the 3D porous yet dense architecture with much improved mechanical robustness. Consequently, fully packaged SCs using the BP@MXene composite films with a practical-level of mass loading (∼15 mg cm-2) deliver a high stack volumetric energy density of 72.6 Wh L-1, approaching those of lead-acid batteries (50-90 Wh L-1), together with a long-term stability (90.58% capacitance retention after 50000 cycles). The achievement of such high energy density bridges the gap between traditional batteries and SCs and represents a timely breakthrough in designing compact electrodes toward commercial-level capacitive energy storage.

13.
Adv Sci (Weinh) ; 8(18): e2101344, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34258886

RESUMO

Atomically dispersed Pt species are advocated as a promising electrocatalyst for the oxygen reduction reaction (ORR) to boost noble metal utilization efficiency. However, when assembled on various substrates, isolated Pt single atoms are often demonstrated to proceed through the two-electron ORR pathway due to the unfavorable O─O bond cleavage thermodynamics in the absence of catalytic ensemble sites. In addition, although their distinct local coordination environments at the exact single active sites are intensively explored, the interactions and synergy between closely neighboring single atom sites remain elusive. Herein, atomically dispersed Pt monomers strongly interacting on a Mo2 C support is demonstrated as a model catalyst in the four-electron ORR, and the beneficial interactions between two closely neighboring and yet non-contiguous Pt single atom sites (named as quasi-paired Pt single atoms) are shown. Compared to isolated Pt single atom sites, the quasi-paired Pt single atoms deliver a superior mass activity of 0.224 A mg-1 Pt and near-100% selectivity toward four-electron ORR due to the synergistic interaction from the two quasi-paired Pt atom sites in modulating the binding mode of reaction intermediates. Our first-principles calculations reveal a unique mechanism of such quasi-paired configuration for promoting four-electron ORR.

14.
Nat Commun ; 12(1): 2841, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990584

RESUMO

Traditional strategies for improving piezoelectric properties have focused on phase boundary engineering through complex chemical alloying and phase control. Although they have been successfully employed in bulk materials, they have not been effective in thin films due to the severe deterioration in epitaxy, which is critical to film properties. Contending with the opposing effects of alloying and epitaxy in thin films has been a long-standing issue. Herein we demonstrate a new strategy in alkali niobate epitaxial films, utilizing alkali vacancies without alloying to form nanopillars enclosed with out-of-phase boundaries that can give rise to a giant electromechanical response. Both atomically resolved polarization mapping and phase field simulations show that the boundaries are strained and charged, manifesting as head-head and tail-tail polarization bound charges. Such charged boundaries produce a giant local depolarization field, which facilitates a steady polarization rotation between the matrix and nanopillars. The local elastic strain and charge manipulation at out-of-phase boundaries, demonstrated here, can be used as an effective pathway to obtain large electromechanical response with good temperature stability in similar perovskite oxides.

15.
Adv Mater ; 33(8): e2003846, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33349991

RESUMO

For mass production of high-purity hydrogen fuel by electrochemical water splitting, seawater electrolysis is an attractive alternative to the traditional freshwater electrolysis due to the abundance and low cost of seawater in nature. However, the undesirable chlorine ion oxidation reactions occurring simultaneously with seawater electrolysis greatly hinder the overall performance of seawater electrolysis. To tackle this problem, electrocatalysts of high activity and selectivity with purposely modulated coordination and an alkaline environment are urgently required. Herein, it is demonstrated that atomically dispersed Ni with triple nitrogen coordination (Ni-N3 ) can achieve efficient hydrogen evolution reaction (HER) performance in alkaline media. The atomically dispersed Ni electrocatalysts exhibit overpotentials as low as 102 and 139 mV at 10 mA cm-2 in alkaline freshwater and seawater electrolytes, respectively, which compare favorably with those previously reported. They also deliver large current densities beyond 200 mA cm-2 at lower overpotentials than Pt/C, as well as show negligible current attenuation over 14 h. The X-ray absorption fine structure (XAFS) experimental analysis and density functional theory (DFT) calculations verify that the Ni-N3 coordination, which exhibits a lower coordination number than Ni-N4 , facilitates water dissociation and hydrogen adsorption, and hence enhances the HER activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...