Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Weld World ; 68(5): 1053-1069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751849

RESUMO

Grain refinement by plastic deformation during conventional TIG welding can help to compensate for the loss of mechanical properties of welded joints. The thermomechanical welding (TMW) tests were performed on S700MC steel with different combinations of TIG arc energy and high frequency hammering over three target cooling times (t8/5 = 5s, 15s, and 25s). Additionally, the effect of initial microstructures on the weld joint quality was analysed by testing three materials conditions: hot-rolled (as-received) and cold-rolled with 10% and 30% thickness reductions, respectively. The effects of plastic deformation and the mechanical vibration on the grain refinement were studied separately. Optical microscopy, electron backscattered diffraction, and Vickers hardness were used to characterise the weld microstructure heterogeneity. The weld width and depth and the mean grain size were correlated as the function of cooling time t8/5. The results show that the weld dimensions increase with increasing the t8/5. The weld microstructures transformed from the mixed martensite and bainite into mixed ferrite and bainite with increasing the t8/5 time, and the related mean grain size increased gradually. The TMW welds exhibit smaller grains compared to TIG welds due to the coupled effects of mechanical vibration and plastic deformation. The mechanical vibration contributes to weld metal homogenisation, accelerating TiN precipitation in the fusion zone. The proposed TMW process can refine the weld microstructure of S700MC steel, enhancing its mechanical properties.

2.
Technol Health Care ; 32(2): 1123-1133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37545288

RESUMO

BACKGROUND: In order to ensure the proper function of the cementless hip implant, the connection between the femoral bone and the implant has to be as strong as possible. According to experimental studies, implants with a rough surface reduce micro-movements between femoral bone and implant, which helps form a stronger connection between them. OBJECTIVE: The goal of this study was to analyze how half-cylinder surface topographies of different diameter values affect shear stress values and their distribution on the surface of the hip implant and trabecular femoral bone. METHODS: Nine models with different half-cylinder diameter values (200 µm, 400 µm, and 500 µm) and distances between half-cylinders were created for the analysis using the finite element method. Each model consisted of three layers: implant, trabecular, and cortical femoral bone. RESULTS: For all three diameter values, the highest shear stress value, for the implant layer, was located after the first half-cylinder on the side where force was defined. For the trabecular bone, the first half-cylinder was under lower amounts of shear stress. CONCLUSION: If we only consider shear stress values, we can say that models with 400 µm and 500 µm diameter values are a better choice than models with 100 µm diameter values.


Assuntos
Prótese de Quadril , Titânio , Humanos , Imageamento Tridimensional , Análise de Elementos Finitos , Fenômenos Biomecânicos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA