Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(7): e0131993, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26134409

RESUMO

Prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, and scrapie in sheep are fatal neurodegenerative diseases for which there is no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPsc or PrPres). Both in vitro (cell culture and cell free conversion assays) and in vivo (animal) studies have demonstrated the strong dependence of this conversion process on protein sequence homology between the initial prion inoculum and the host's own cellular prion protein. The presence of non-homologous (heterologous) proteins is often inhibitory to this conversion process. We hypothesize that the presence of heterologous prion proteins from one species might therefore constitute an effective treatment for prion disease in another species. To test this hypothesis, we infected mice intracerebrally with murine adapted RML-Chandler scrapie and treated them with heterologous prion protein (purified bacterially expressed recombinant hamster prion protein) or vehicle alone. Treated animals demonstrated reduced disease associated pathology, decreased accumulation of protease-resistant disease-associated prion protein, with delayed onset of clinical symptoms and motor deficits. This was concomitant with significantly increased survival times relative to mock-treated animals. These results provide proof of principle that recombinant hamster prion proteins can effectively and safely inhibit prion disease in mice, and suggest that hamster or other non-human prion proteins may be a viable treatment for prion diseases in humans.


Assuntos
Proteínas PrPC/uso terapêutico , Doenças Priônicas/terapia , Proteínas Recombinantes/uso terapêutico , Scrapie/terapia , Animais , Células Cultivadas , Cricetinae , Modelos Animais de Doenças , Progressão da Doença , Feminino , Gliose/fisiopatologia , Gliose/terapia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas PrPC/química , Doenças Priônicas/genética , Proteínas Recombinantes/química , Resultado do Tratamento
2.
J Virol ; 87(17): 9501-10, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23785217

RESUMO

In most forms of prion disease, infectivity is present primarily in the central nervous system or immune system organs such as spleen and lymph node. However, a transgenic mouse model of prion disease has demonstrated that prion infectivity can also be present as amyloid deposits in heart tissue. Deposition of infectious prions as amyloid in human heart tissue would be a significant public health concern. Although abnormal disease-associated prion protein (PrP(Sc)) has not been detected in heart tissue from several amyloid heart disease patients, it has been observed in the heart tissue of a patient with sporadic Creutzfeldt-Jakob Disease (sCJD), the most common form of human prion disease. In order to determine whether prion infectivity can be found in heart tissue, we have inoculated formaldehyde fixed brain and heart tissue from two sCJD patients, as well as prion protein positive fixed heart tissue from two amyloid heart disease patients, into transgenic mice overexpressing the human prion protein. Although the sCJD brain samples led to clinical or subclinical prion infection and deposition of PrP(Sc) in the brain, none of the inoculated heart samples resulted in disease or the accumulation of PrP(Sc). Thus, our results suggest that prion infectivity is not likely present in cardiac tissue from sCJD or amyloid heart disease patients.


Assuntos
Amiloidose/metabolismo , Amiloidose/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas PrPSc/metabolismo , Proteínas PrPSc/patogenicidade , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/transmissão , Cricetinae , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos
3.
J Virol ; 83(9): 4469-75, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19225008

RESUMO

The hallmark of transmissible spongiform encephalopathies (TSEs or prion diseases) is the accumulation of an abnormally folded, partially protease-resistant form (PrP-res) of the normal protease-sensitive prion protein (PrP-sen). PrP-sen is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. In vitro, the anchor and the local membrane environment are important for the conversion of PrP-sen to PrP-res. In vivo, however, the anchor is not necessary because transgenic mice expressing anchorless PrP-sen accumulate PrP-res and replicate infectivity. To clarify the role of the GPI anchor in TSE infection, cells expressing GPI-anchored PrP-sen, anchorless PrP-sen, or both forms of PrP-sen were exposed to the mouse scrapie strain 22L. Cells expressing anchored PrP-sen produced PrP-res after exposure to 22L. Surprisingly, while cells expressing anchorless PrP-sen made anchorless PrP-res in the first 96 h postinfection, no PrP-res was detected at later passes. In contrast, when cells expressing both forms of PrP-sen were exposed to 22L, both anchored and anchorless PrP-res were detected over multiple passes. Consistent with the in vitro data, scrapie-infected cells expressing anchored PrP-sen transmitted disease to mice whereas cells expressing anchorless PrP-sen alone did not. These results demonstrate that the GPI anchor on PrP-sen is important for the persistent infection of cells in vitro. Our data suggest that cells expressing anchorless PrP-sen are not directly infected with scrapie. Thus, PrP-res formation in transgenic mice expressing anchorless PrP-sen may be occurring extracellularly.


Assuntos
Príons/metabolismo , Scrapie/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Transgênicos
4.
Virology ; 379(2): 284-93, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18692214

RESUMO

Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that include Creutzfeldt-Jakob disease, bovine spongiform encephalopathy and sheep scrapie. Although one of the earliest events during TSE infection is the cellular uptake of protease resistant prion protein (PrP-res), this process is poorly understood due to the difficulty of clearly distinguishing input PrP-res from either PrP-res or protease-sensitive PrP (PrP-sen) made by the cell. Using PrP-res tagged with a unique antibody epitope, we examined PrP-res uptake in neuronal and fibroblast cells exposed to three different mouse scrapie strains. PrP-res uptake was rapid and independent of scrapie strain, cell type, or cellular PrP expression, but occurred in only a subset of cells and was influenced by PrP-res preparation and aggregate size. Our results suggest that PrP-res aggregate size, the PrP-res microenvironment, and/or host cell-specific factors can all influence whether or not a cell takes up PrP-res following exposure to TSE infectivity.


Assuntos
Príons/metabolismo , Scrapie/metabolismo , Animais , Transporte Biológico Ativo , Encéfalo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Cinética , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Neurônios/metabolismo , Peptídeo Hidrolases/metabolismo , Príons/química , Príons/genética , Ligação Proteica , Scrapie/etiologia , Scrapie/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA