Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(8): 230579, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564068

RESUMO

Immunocompetence and reproduction are among the most important determinants of fitness. However, energetic and metabolic constraints create conflict between these two life-history traits. While many studies have explored the relationship between immune activity and reproductive fitness in birds and mammals inoculated with bacterial endotoxin, very few have focused on fish. Fish have been neglected in this area due, in part, to the claim that they are largely resistant to the immune effects of endotoxins. However, the present study suggests that they are susceptible to significant effects with respect to reproductive behaviour. Here, we examined the reproductive behaviour of male guppies following exposure to bacterial lipopolysaccharides (LPS) in comparison to that of male guppies in a control treatment. Additionally, we investigated the responses of females to these males. We show that although immune challenge does not suppress general activity in male guppies, it significantly reduces mating effort. While females showed no difference in general activity as a function of male treatments, they did exhibit reduced group cohesion in the presence of LPS-exposed males. We discuss this in the context of sickness behaviours, social avoidance of immune-challenged individuals and the effects of mounting an immune response on reproductive behaviour.

2.
Proc Biol Sci ; 289(1969): 20212361, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35193400

RESUMO

Antarctic krill swarms are one of the largest known animal aggregations, and yet, despite being the keystone species of the Southern Ocean, little is known about how swarms are formed and maintained. Understanding the local interactions between individuals that provide the basis for these swarms is fundamental to knowing how swarms arise in nature, and what potential factors might lead to their breakdown. Here, we analysed the trajectories of captive, wild-caught krill in 3D to determine individual-level interaction rules and quantify patterns of information flow. Our results demonstrate that krill align with near neighbours and that they regulate both their direction and speed relative to the positions of groupmates. These results suggest that social factors are vital to the formation and maintenance of swarms. Furthermore, krill operate a novel form of collective organization, with measures of information flow and individual movement adjustments expressed most strongly in the vertical dimension, a finding not seen in other swarming species. This research represents a vital step in understanding the fundamentally important swarming behaviour of krill.


Assuntos
Euphausiacea , Animais , Regiões Antárticas , Euphausiacea/fisiologia
3.
R Soc Open Sci ; 8(10): 211125, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34659783

RESUMO

Crypsis, or the ability to avoid detection and/or recognition, is an important and widespread anti-predator strategy across the animal kingdom. Many animals are able to camouflage themselves by adapting their body colour to the local environment. In particular, rapid changes in body colour are often critical to the survival of cryptic prey which rely on evading detection by predators. This is especially pertinent for animals subject to spatio-temporal variability in their environment, as they must adapt to acute changes in their visual surroundings. However, which features of the local environment are most relevant is not well understood. In particular, little is known about how social context interacts with other environmental stimuli to influence crypsis. Here, we use a common cryptic prey animal, the goby (Pseudogobius species 2) to examine how the presence and body colour of conspecifics influence the rate and extent to which gobies change colour. We find that solitary gobies change colour to match their background faster and to a greater extent than gobies in pairs. Further, we find that this relationship holds irrespective of the colour of nearby conspecifics. This study demonstrates the importance of social context in mediating colour change in cryptic animals.

4.
R Soc Open Sci ; 8(4): 210146, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33868699

RESUMO

Competition for resources shapes ecological and evolutionary relationships. Physiological capacities such as in locomotor performance can influence the fitness of individuals by increasing competitive success. Social hierarchy too can affect outcomes of competition by altering locomotor behaviour or because higher ranking individuals monopolize resources. Here, we tested the hypotheses that competitive success is determined by sprint performance or by social status. We show that sprint performance of individuals measured during escape responses (fast start) or in an accelerated sprint test did not correlate with realized sprint speed while competing for food within a social group of five fish; fast start and accelerated sprint speed were higher than realized speed. Social status within the group was the best predictor of competitive success, followed by realized speed. Social hierarchies in zebrafish are established within 7 days of their first encounter, and interestingly, there was a positive correlation between social status and realized speed 1 and 4 days after fish were placed in a group, but not after 7 days. These data indicate that physiological performance decreases in importance as social relationships are established. Also, maximal physiological capacities were not important for competitive success, but swimming speed changed with social context.

5.
Ecol Evol ; 10(6): 3043-3054, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211175

RESUMO

The dynamics and prevalence of mutualistic interactions, which are responsible for the maintenance and structuring of all ecological communities, are vulnerable to changes in abiotic and biotic environmental conditions. Mutualistic outcomes can quickly shift from cooperation to conflict, but it unclear how resilient and stable mutualistic outcomes are to more variable conditions. Tidally controlled coral atoll lagoons that experience extreme diurnal environmental shifts thus provide a model from which to test plasticity in mutualistic behavior of dedicated (formerly obligate) cleaner fish, which acquire all their food resources through client interactions. Here, we investigated cleaning patterns of a model cleaner fish species, the bluestreak wrasse (Labroides dimidiatus), in an isolated tidal lagoon on the Great Barrier Reef. Under tidally restricted conditions, uniquely both adults and juveniles were part-time facultative cleaners, pecking on Isopora palifera coral. The mutualism was not completely abandoned, with adults also wandering across the reef in search of clients, rather than waiting at fixed site cleaning stations, a behavior not yet observed at any other reef. Contrary to well-established patterns for this cleaner, juveniles appeared to exploit the system, by biting ("cheating") their clients more frequently than adults. We show for the first time, that within this variable tidal environment, where mutualistic cleaning might not represent a stable food source, the prevalence and dynamics of this mutualism may be breaking down (through increased cheating and partial abandonment). Environmental variability could thus reduce the pervasiveness of mutualisms within our ecosystems, ultimately reducing the stability of the system.

6.
Biol Lett ; 15(10): 20190335, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31573425

RESUMO

Numerous studies have reported functional improvements in collective behaviour with increasing group size, however, the possibility that such improvements may saturate or even decline as group size continues to grow have seldom been tested experimentally. Here, we tested the ability of solitary three-spined sticklebacks and those in groups, ranging from 2 to 29 fish, to leave an unfavourable patch of habitat. Our results replicate the findings of previous studies at low group sizes, with the fish initially showing a reduction in their latency to leave the unfavourable habitat as group size increased. As group size continued to increase, however, latency to leave the habitat increased, so that the functional relationship between group size and latency to depart was U-shaped. Our results suggest an optimum group size in this context of between 12 and 20 fish. Underlying this group-level trend was a similar U-shaped relationship between group size and the first fish to leave the habitat, suggesting that at larger group sizes, social conformity to the behaviour of the majority can stifle the ability of fish to innovate-in this case, to induce a collective movement from the unfavourable habitat.


Assuntos
Smegmamorpha , Animais , Tomada de Decisões , Ecossistema , Peixes , Conformidade Social
7.
Proc Biol Sci ; 286(1903): 20190448, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31113322

RESUMO

In the wild, prey species often live in the vicinity of predators, rendering the ability to assess risk on a moment-to-moment basis crucial to survival. Visual cues are important as they allow prey to assess predator species, size, proximity and behaviour. However, few studies have explicitly examined prey's ability to assess risk based on predator behaviour and orientation. Using mosquitofish, Gambusia holbrooki, and their predator, jade perch, Scortum barcoo, under controlled conditions, we provide some of the first fine-scale characterization of how prey adapt their behaviour according to their continuous assessment of risk based on both predator behaviour and angular distance to the predator's mouth. When these predators were inactive and posed less of an immediate threat, prey within the attack cone of the predator showed reductions in speed and acceleration characteristic of predator-inspection behaviour. However, when predators became active, prey swam faster with greater acceleration and were closer together within the attack cone of predators. Most importantly, this study provides evidence that prey do not adopt a uniform response to the presence of a predator. Instead, we demonstrate that prey are capable of rapidly and dynamically updating their assessment of risk and showing fine-scale adjustments to their behaviour.


Assuntos
Ciprinodontiformes/fisiologia , Cadeia Alimentar , Movimento , Perciformes/fisiologia , Comportamento Predatório , Animais , Comportamento Animal
8.
R Soc Open Sci ; 6(2): 181482, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30891275

RESUMO

Collectively moving animals often display a high degree of synchronization and cohesive group-level formations, such as elongated schools of fish. These global patterns emerge as the result of localized rules of interactions. However, the exact relationship between speed, polarization, neighbour positioning and group structure has produced conflicting results and is largely limited to modelling approaches. This hinders our ability to understand how information spreads between individuals, which may determine the collective functioning of groups. We tested how speed interacts with polarization and positional composition to produce the elongation observed in moving groups of fish as well as how this impacts information flow between individuals. At the local level, we found that increases in speed led to increases in alignment and shifts from lateral to linear neighbour positioning. At the global level, these increases in linear neighbour positioning resulted in elongation of the group. Furthermore, mean pairwise transfer entropy increased with speed and alignment, implying an adaptive value to forming faster, more polarized and linear groups. Ultimately, this research provides vital insight into the mechanisms underlying the elongation of moving animal groups and highlights the functional significance of cohesive and coordinated movement.

9.
R Soc Open Sci ; 5(12): 181132, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30662732

RESUMO

Despite the frequency with which mixed-species groups are observed in nature, studies of collective behaviour typically focus on single-species groups. Here, we quantify and compare the patterns of interactions between three fish species, threespine sticklebacks (Gasterosteus aculeatus), ninespine sticklebacks (Pungitius pungitius) and roach (Rutilus rutilus) in both single- and mixed-species shoals in the laboratory. Pilot data confirmed that the three species form both single- and mixed-species shoals in the wild. In our laboratory study, we found that single-species groups were more polarized than mixed-species groups, while single-species groups of threespine sticklebacks and roach were more cohesive than mixed shoals of these species. Furthermore, while there was no difference between the inter-individual distances between threespine and ninespine sticklebacks within mixed-species groups, there was some evidence of segregation by species in mixed groups of threespine sticklebacks and roach. There were differences between treatments in mean pairwise transfer entropy, and in particular we identify species-differences in information use within the mixed-species groups, and, similarly, differences in responses to conspecifics and heterospecifics in mixed-species groups. We speculate that differences in the patterns of interactions between species in mixed-species groups may determine patterns of fission and fusion in such groups.

10.
R Soc Open Sci ; 4(9): 170312, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28989737

RESUMO

The coordinated and synchronized movement of animals in groups often referred to as collective motion emerges through the interactions between individual animals within the group. Factors which affect these interactions have the potential to shape collective movement. One such factor is familiarity, or the tendency to bias behaviour towards individuals as a result of social recognition. We examined the effect of familiarity on the expression of collective motion in small shoals of female guppies (Poecilia reticulata). Groups comprising familiar individuals were more strongly polarized than groups of unfamiliar individuals, particularly when in novel surroundings. The ability to form more strongly polarized shoals potentially promotes information transfer and enhances the anti-predator benefits of grouping.

11.
R Soc Open Sci ; 4(7): 170043, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28791135

RESUMO

Collective motion describes the global properties of moving groups of animals and the self-organized, coordinated patterns of individual behaviour that produce them. We examined the group-level patterns and local interactions between individuals in wild, free-ranging shoals of three-spine sticklebacks, Gasterosteus aculeatus. Our data reveal that the highest frequencies of near-neighbour encounters occur at between one and two body lengths from a focal fish, with the peak frequency alongside a focal individual. Fish also show the highest alignment with these laterally placed individuals, and generally with animals in front of themselves. Furthermore, fish are more closely matched in size, speed and orientation to their near neighbours than to more distant neighbours, indicating local organization within groups. Among the group-level properties reported here, we find that polarization is strongly influenced by group speed, but also the variation in speed among individuals and the nearest neighbour distances of group members. While we find no relationship between group order and group size, we do find that larger groups tend to have lower nearest neighbour distances, which in turn may be important in maintaining group order.

12.
Sci Adv ; 3(6): e1603201, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28691088

RESUMO

Collective animal behavior is an emergent phenomenon arising from the local interactions of the members of animal groups. Considerable progress has been made in characterizing these interactions, particularly inferring rules that shape and guide the responses of animals to their near neighbors. To date, experimental work has focused on collective behavior within a single, stable context. We examine the individual and collective behavior of a schooling fish species, the x-ray tetra (Pristella maxillaris), identifying their response to changes in context produced by food cues or conspecific alarm cues. Fish exposed to alarm cues show pronounced, broad-ranging changes of behavior, including reducing speed and predictability in their movements. Alarmed fish also alter their responses to other group members, including enacting a smaller zone of repulsion and increasing their frequency of observation of, and responsiveness to, near neighbors. Fish subject to food cues increased speed as a function of neighbor positions and reduced encounter frequency with near neighbors. Overall, changes in individual behavior and the interactions among individuals in response to external cues coincide with changes in group-level patterns, providing insight into the adaptability of behavior to changes in context and interrelationship between local interactions and global patterns in collective behavior.


Assuntos
Comportamento Animal , Sinais (Psicologia) , Peixes/fisiologia , Animais , Locomoção
13.
R Soc Open Sci ; 4(4): 161056, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28484622

RESUMO

While a rich variety of self-propelled particle models propose to explain the collective motion of fish and other animals, rigorous statistical comparison between models and data remains a challenge. Plausible models should be flexible enough to capture changes in the collective behaviour of animal groups at their different developmental stages and group sizes. Here, we analyse the statistical properties of schooling fish (Pseudomugil signifer) through a combination of experiments and simulations. We make novel use of a Boltzmann inversion method, usually applied in molecular dynamics, to identify the effective potential of the mean force of fish interactions. Specifically, we show that larger fish have a larger repulsion zone, but stronger attraction, resulting in greater alignment in their collective motion. We model the collective dynamics of schools using a self-propelled particle model, modified to include varying particle speed and a local repulsion rule. We demonstrate that the statistical properties of the fish schools are reproduced by our model, thereby capturing a number of features of the behaviour and development of schooling fish.

14.
R Soc Open Sci ; 3(6): 160316, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27429785

RESUMO

Local specialization can be advantageous for individuals and may increase the resilience of the species to environmental change. However, there may be trade-offs between morphological responses and physiological performance and behaviour. Our aim was to test whether habitat-specific morphology of stickleback (Gasterosteus aculeatus) interacts with physiological performance and behaviour at different salinities. We rejected the hypothesis that deeper body shape of fish from habitats with high predation pressure led to decreases in locomotor performance. However, there was a trade-off between deeper body shape and muscle quality. Muscle of deeper-bodied fish produced less force than that of shallow-bodied saltmarsh fish. Nonetheless, saltmarsh fish had lower swimming performance, presumably because of lower muscle mass overall coupled with smaller caudal peduncles and larger heads. Saltmarsh fish performed better in saline water (20 ppt) relative to freshwater and relative to fish from freshwater habitats. However, exposure to salinity affected shoaling behaviour of fish from all habitats and shoals moved faster and closer together compared with freshwater. We show that habitat modification can alter phenotypes of native species, but local morphological specialization is associated with trade-offs that may reduce its benefits.

15.
R Soc Open Sci ; 2(4): 140355, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26064630

RESUMO

The exceptional reactivity of animal collectives to predatory attacks is thought to be owing to rapid, but local, transfer of information between group members. These groups turn together in unison and produce escape waves. However, it is not clear how escape waves are created from local interactions, nor is it understood how these patterns are shaped by natural selection. By startling schools of fish with a simulated attack in an experimental arena, we demonstrate that changes in the direction and speed by a small percentage of individuals that detect the danger initiate an escape wave. This escape wave consists of a densely packed band of individuals that causes other school members to change direction. In the majority of cases, this wave passes through the entire group. We use a simulation model to demonstrate that this mechanism can, through local interactions alone, produce arbitrarily large escape waves. In the model, when we set the group density to that seen in real fish schools, we find that the risk to the members at the edge of the group is roughly equal to the risk of those within the group. Our experiments and modelling results provide a plausible explanation for how escape waves propagate in nature without centralized control.

16.
Oecologia ; 177(1): 293-303, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25294220

RESUMO

Predators attack and plants defend, so herbivores face the dilemma of how to eat enough without being eaten. But do differences in the personality of herbivores affect the foraging choices of individuals? We explored the ecological impact of personality in a generalist herbivore, the brushtail possum (Trichosurus vulpecula). After quantifying personality traits in wild individuals brought temporarily into captivity, we tested how these traits altered foraging by individuals when free-ranging in their natural habitat. To measure their responses to the dual costs of predation risk and plant toxin, we varied the toxin concentration of food in safe foraging patches against paired, non-toxic risky patches, and used a novel synthesis of a manipulative Giving-Up-Density (GUD) experiment and video behavioural analysis. At the population level, the cost of safe patches pivoted around that of risky patches depending on food toxin concentration. At the individual level, boldness affected foraging at risky high-quality food patches (as behavioural differences between bold and shy), and at safe patches only when food toxin concentration was low (as differences in foraging outcome). Our results ecologically validate the personality trait of boldness, in brushtail possums. They also reveal, for the first time, a nuanced link between personality and the way in which individuals balance the costs of food and fear. Importantly, they suggest that high plant defence effectively attenuates differences in foraging behaviour arising from variation in personality, but poorly defended plants in safe areas should be differentially subject to herbivory depending on the personality of the herbivore.


Assuntos
Ingestão de Alimentos , Medo , Herbivoria , Personalidade , Trichosurus , Animais , Comportamento Animal , Ecossistema , Plantas Tóxicas , Comportamento Predatório , Segurança
17.
Aquat Toxicol ; 142-143: 203-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24036535

RESUMO

The majority of ecotoxicological studies have been concerned with responses of organisms to a single contaminant. While this approach remains valid, the challenge now is to understand the way in which multiple contaminants and stressors interact to produce effects in study organisms. Here we take an integrated biological and physico-chemical approach to understand the effects of 4-nonylphenol and copper on fish (white perch, Morone americana) chemosensory behaviour. We show that a one hour exposure to 2 µg L(-1) nonylphenol removes chemosensory attraction to conspecific chemical cues, while exposure to 5 µg L(-1) copper for one hour had no significant effect on the fish's attraction to these cues. Further, we show that simultaneous exposure to both contaminants at the stated dosage and for the same duration has no significant effect on the chemosensory attraction of white perch to conspecific chemical cues suggesting that copper mediates the effect of nonylphenol on fish in this respect. Physico-chemical data show that copper ions bind to nonylphenol in water, providing a mechanistic explanation for this change in the effect of nonylphenol. Furthermore, the finding that the copper ions bind to the lone pair of O on the nonylphenol molecule offers the tantalising possibility that it is this region of the nonylphenol molecule that plays the key role in disrupting fish chemical communication.


Assuntos
Bass/fisiologia , Cobre/farmacologia , Fenóis/toxicidade , Sensação/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Interações Medicamentosas
18.
Am Nat ; 181(6): 748-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23669538

RESUMO

Explaining how individual behavior and social interactions give rise to group-level outcomes and affect issues such as leadership is fundamental to the understanding of collective behavior. Here we examined individual and collective behavioral dynamics in groups of humbug damselfish both before and during a collective movement. During the predeparture phase, group activity increased until the collective movement occurred. Although such movements were precipitated by one individual, the success or failure of any attempt to instigate a collective movement was not solely dependent on this initiator's behavior but on the behavior of the group as a whole. Specifically, groups were more active and less cohesive before a successful initiation attempt than before a failed attempt. Individuals who made the most attempts to initiate a collective movement during each trial were ultimately most likely to lead the collective movement. Leadership was not related to dominance but was consistent between trials. The probability of fish recruiting to a group movement initiative was an approximately linear function of the number of fish already recruited. Overall, these results are consistent with nonselective local mimetism, with the decision to leave based on a group's, rather than any particular individual's, readiness to leave.


Assuntos
Comportamento Animal , Perciformes , Comportamento Social , Natação , Animais , Cadeias de Markov , Modelos Biológicos
19.
PLoS Comput Biol ; 9(3): e1002961, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555206

RESUMO

Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis). We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture the observed locality of interactions. Traditional self-propelled particle models fail to capture the fine scale dynamics of the system. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics, while maintaining a biologically plausible perceptual range. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.


Assuntos
Teorema de Bayes , Comportamento Animal/fisiologia , Modelos Biológicos , Animais , Biologia Computacional/métodos , Simulação por Computador , Decápodes/fisiologia , Comportamento Social , Comportamento Espacial/fisiologia
20.
Proc Biol Sci ; 280(1756): 20122777, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23407830

RESUMO

In a wide range of contexts, including predator avoidance, medical decision-making and security screening, decision accuracy is fundamentally constrained by the trade-off between true and false positives. Increased true positives are possible only at the cost of increased false positives; conversely, decreased false positives are associated with decreased true positives. We use an integrated theoretical and experimental approach to show that a group of decision-makers can overcome this basic limitation. Using a mathematical model, we show that a simple quorum decision rule enables individuals in groups to simultaneously increase true positives and decrease false positives. The results from a predator-detection experiment that we performed with humans are in line with these predictions: (i) after observing the choices of the other group members, individuals both increase true positives and decrease false positives, (ii) this effect gets stronger as group size increases, (iii) individuals use a quorum threshold set between the average true- and false-positive rates of the other group members, and (iv) individuals adjust their quorum adaptively to the performance of the group. Our results have broad implications for our understanding of the ecology and evolution of group-living animals and lend themselves for applications in the human domain such as the design of improved screening methods in medical, forensic, security and business applications.


Assuntos
Cognição , Tomada de Decisões , Modelos Teóricos , Comportamento Social , Animais , Reações Falso-Positivas , Humanos , Experimentação Humana não Terapêutica , Comportamento Predatório , Incerteza , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...