Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(2): 669-682, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37709040

RESUMO

Obesity is often accompanied by heightened circulating and tissue inflammation along with an increase in sphingolipids (e.g., ceramides) in metabolically active and insulin-sensitive organs. Whey protein isolate (WPI) has been shown to decrease inflammation and increase insulin sensitivity when given during a high-fat diet (HFD) intervention in rodents. The whey protein bioactive peptide glycomacropeptide (GMP) has also been linked to having anti-inflammatory properties and regulating lipogenesis. Therefore, the purpose of the study was to determine the effect of dietary GMP within the whey protein matrix on tissue inflammation, adiposity, and tissue ceramide accumulation in an obesogenic rodent model. Young adult male mice (10 wk old) underwent a 10-wk 60% HFD intervention. Glycomacropeptide was absent in the control low-fat diet and HFD WPI (-GMP) groups. The HFD WPI (1×GMP) treatment contained a standard amount of GMP, and HFD WPI (2×GMP) had double the amount. We observed no differences in weight gain or reductions in adiposity when comparing the GMP groups to HFD WPI (-GMP). Similarly, insulin resistance and glucose intolerance were not offset with GMP, and skeletal muscle and liver tissue ceramide content was unaltered with the GMP intervention. In contrast, the additional amount of GMP (2×GMP) might adversely affect tissue obesity-related pathologies. Together, dietary GMP given in a whey protein matrix during an HFD intervention does not alter weight gain, insulin resistance, glucose intolerance, and sphingolipid accumulation in the liver and skeletal muscle.


Assuntos
Caseínas , Intolerância à Glucose , Resistência à Insulina , Fragmentos de Peptídeos , Animais , Masculino , Camundongos , Ceramidas , Dieta Hiperlipídica , Intolerância à Glucose/veterinária , Inflamação/veterinária , Camundongos Endogâmicos C57BL , Obesidade/veterinária , Esfingolipídeos , Aumento de Peso , Proteínas do Soro do Leite
2.
J Nutr ; 153(10): 2915-2928, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652286

RESUMO

BACKGROUND: Metabolic diseases are often associated with muscle atrophy and heightened inflammation. The whey bioactive compound, glycomacropeptide (GMP), has been shown to exhibit anti-inflammatory properties and therefore may have potential therapeutic efficacy in conditions of skeletal muscle inflammation and atrophy. OBJECTIVES: The purpose of this study was to determine the role of GMP in preventing lipotoxicity-induced myotube atrophy and inflammation. METHODS: C2C12 myoblasts were differentiated to determine the effect of GMP on atrophy and inflammation and to explore its mechanism of action in evaluating various anabolic and catabolic cellular signaling nodes. We also used a lipidomic analysis to evaluate muscle sphingolipid accumulation with the various treatments. Palmitate (0.75 mM) in the presence and absence of GMP (5 µg/mL) was used to induce myotube atrophy and inflammation and cells were collected over a time course of 6-24 h. RESULTS: After 24 h of treatment, GMP prevented the palmitate-induced decrease in the myotube area and myogenic index and the increase in the TLR4-mediated inflammatory genes tumor necrosis factor-α and interleukin 1ß. Moreover, phosphorylation of Erk1/2, and gene expression of myostatin, and the E3 ubiquitin ligases, FBXO32, and MuRF1 were decreased with GMP treatment. GMP did not alter palmitate-induced ceramide or diacylglycerol accumulation, muscle insulin resistance, or protein synthesis. CONCLUSIONS: In summary, GMP prevented palmitate-induced inflammation and atrophy in C2C12 myotubes. The GMP protective mechanism of action in muscle cells during lipotoxic stress may be related to targeting catabolic signaling associated with cellular stress and proteolysis but not protein synthesis.


Assuntos
Palmitatos , Soro do Leite , Humanos , Soro do Leite/metabolismo , Palmitatos/toxicidade , Palmitatos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Fragmentos de Peptídeos , Inflamação/metabolismo
3.
Nutrients ; 13(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668674

RESUMO

Cheddar cheese is a protein-dense whole food and high in leucine content. However, no information is known about the acute blood amino acid kinetics and protein anabolic effects in skeletal muscle in healthy adults. Therefore, we conducted a crossover study in which men and women (n = 24; ~27 years, ~23 kg/m2) consumed cheese (20 g protein) or an isonitrogenous amount of milk. Blood and skeletal muscle biopsies were taken before and during the post absorptive period following ingestion. We evaluated circulating essential and non-essential amino acids, insulin, and free fatty acids and examined skeletal muscle anabolism by mTORC1 cellular localization, intracellular signaling, and ribosomal profiling. We found that cheese ingestion had a slower yet more sustained branched-chain amino acid circulation appearance over the postprandial period peaking at ~120 min. Cheese also modestly stimulated mTORC1 signaling and increased membrane localization. Using ribosomal profiling we found that, though both milk and cheese stimulated a muscle anabolic program associated with mTORC1 signaling that was more evident with milk, mTORC1 signaling persisted with cheese while also inducing a lower insulinogenic response. We conclude that Cheddar cheese induced a sustained blood amino acid and moderate muscle mTORC1 response yet had a lower glycemic profile compared to milk.


Assuntos
Aminoácidos/sangue , Queijo , Ingestão de Alimentos/fisiologia , Músculo Esquelético/metabolismo , Adulto , Animais , Biópsia , Estudos Cross-Over , Ácidos Graxos não Esterificados/sangue , Feminino , Voluntários Saudáveis , Humanos , Insulina/sangue , Leucina/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Leite/metabolismo , Período Pós-Prandial , Ribossomos/metabolismo , Transdução de Sinais
4.
Int Wound J ; 8(3): 268-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21457463

RESUMO

With an epidemic increase in obesity combined with an ageing population, chronic wounds such as diabetic foot ulcers, pressure ulcers and venous leg ulcers are an increasing clinical concern. Recent studies have shown that bacterial biofilms are a major contributor to wound bioburden and interfere with the normal wound healing process; therefore, rational design of wound therapies should include analysis of anti-biofilm characteristics. Studies using the combined treatment of bacterial biofilms with the innate immune molecule lactoferrin and the rare sugar-alcohol xylitol have demonstrated an antimicrobial capacity against a clinical wound isolate. Studies presented here used a colony-drip-flow reactor biofilm model to assess the anti-biofilm efficacy of a lactoferrin/xylitol hydrogel used in combination with commercially available silver-based wound dressings. Log reductions in biofilm viability are compared with a commercially available wound hydrogel used in combination with the silver-based wound dressings. For both a single species biofilm and a dual species biofilm, the lactoferrin/xylitol hydrogel in combination with the silver wound dressing Acticoat™ had a statistically significant reduction in biofilm viability relative to the commercially available wound hydrogel. This study also demonstrated a statistical interaction between the lactoferrin/xylitol hydrogel and the silver wound dressing.


Assuntos
Curativos Hidrocoloides , Biofilmes/efeitos dos fármacos , Lactoferrina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Compostos de Prata/farmacologia , Xilitol/farmacologia , Antibacterianos/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Viabilidade Microbiana , Pseudomonas aeruginosa/fisiologia , Sensibilidade e Especificidade , Infecção dos Ferimentos/terapia
5.
Int J Antimicrob Agents ; 37(4): 316-23, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21377840

RESUMO

With an ageing and ever more obese population, chronic wounds such as diabetic ulcers, pressure ulcers and venous leg ulcers are an increasingly relevant medical concern. Identification of bacterial biofilm contamination as a major contributor to non-healing wounds demands biofilm-targeted strategies to manage chronic wounds. Pseudomonas aeruginosa has been identified as a principal biofilm-forming opportunistic pathogen in chronic wounds. The innate immune molecule lactoferrin and the rare sugar alcohol xylitol have been demonstrated to be co-operatively efficacious against P. aeruginosa biofilms in vitro. Data presented here propose a model for the molecular mechanism behind this co-operative antimicrobial effect. Lactoferrin iron chelation was identified as the primary means by which lactoferrin destabilises the bacterial membrane. By microarray analysis, 183 differentially expressed genes of ≥ 1.5-fold difference were detected. Interestingly, differentially expressed transcripts included the operon encoding components of the pyochelin biosynthesis pathway. Furthermore, siderophore detection verified that xylitol is the component of this novel synergistic treatment that inhibits the ability of the bacteria to produce siderophores under conditions of iron restriction. The findings presented here demonstrate that whilst lactoferrin treatment of P. aeruginosa biofilms results in destabilisation of the bacterial cell membrane though iron chelation, combined treatment with lactoferrin and xylitol inhibits the ability of P. aeruginosa biofilms to respond to environmental iron restriction.


Assuntos
Biofilmes , Quelantes de Ferro/farmacologia , Lactoferrina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Xilitol/farmacologia , Sequência de Bases , Primers do DNA , Regulação Bacteriana da Expressão Gênica , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia
6.
Nutr J ; 8: 47, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19835582

RESUMO

BACKGROUND: Incidence of diabetes, obesity and insulin resistance are associated with high glycemic load diets. Identifying food components that decrease post-prandial glycemia may be beneficial for developing low glycemic foods and supplements. This study explores the glycemic impact of adding escalating doses of a glycemic index lowering peptide fraction (GILP) from whey to a glucose drink. METHODS: Ten healthy subjects (3M, 7F, 44.4 +/- 9.3 years, BMI 33.6 +/- 4.8 kg/m2) participated in an acute randomised controlled study. Zero, 5, 10 and 20 g of protein from GILP were added to a 50 g glucose drink. The control (0 g of GILP) meal was repeated 2 times. Capillary blood samples were taken fasting (0 min) and at 15, 30, 45, 60, 90 and 120 minutes after the start of the meal and analyzed for blood glucose concentration. RESULTS: Increasing doses of GILP decreased the incremental areas under the curve in a dose dependant manner (Pearson's r = 0.48, p = 0.002). The incremental areas (iAUC) under the glucose curve for the 0, 5, 10, and 20 g of protein from GILP were 231 +/- 23, 212 +/- 23, 196 +/- 23, and 138 +/- 13 mmol.min/L respectively. The iAUC of the 20 g GILP was significantly different from control, 5 g GILP and 10 g GILP (p < 0.001). Average reduction in the glucose iAUC was 4.6 +/- 1.4 mmol.min/L per gram of ingested GILP. CONCLUSION: Addition of GILP to a oral glucose bolus reduces blood glucose iAUC in a dose dependent manner and averages 4.6 +/- 1.4 mmol.min/L per gram of GILP. These data are consistent with previous research on the effect of protein on the glycemic response of a meal.


Assuntos
Glicemia/análise , Suplementos Nutricionais , Proteínas do Leite/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Adulto , Índice de Massa Corporal , Feminino , Alimentos Formulados , Glucose/administração & dosagem , Índice Glicêmico , Humanos , Masculino , Análise por Pareamento , Pessoa de Meia-Idade , Período Pós-Prandial , Proteínas do Soro do Leite
7.
Int J Antimicrob Agents ; 33(3): 230-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18977641

RESUMO

The medical impact of bacterial biofilms has increased with the recognition of biofilms as a major contributor to chronic wounds such as diabetic foot ulcers, venous leg ulcers and pressure ulcers. Traditional methods of treatment have proven ineffective, therefore this article presents in vitro evidence to support the use of novel antimicrobials in the treatment of Pseudomonas aeruginosa biofilm. An in vitro biofilm model with a clinical isolate of P. aeruginosa was subjected to treatment with either lactoferrin or xylitol alone or in combination. Combined lactoferrin and xylitol treatment disrupted the structure of the P. aeruginosa biofilm and resulted in a >2log reduction in viability. In situ analysis indicated that while xylitol treatment appeared to disrupt the biofilm structure, lactoferrin treatment resulted in a greater than two-fold increase in the number of permeabilised bacterial cells. The findings presented here indicated that combined treatment with lactoferrin and xylitol significantly decreases the viability of established P. aeruginosa biofilms in vitro and that the antimicrobial mechanism of this treatment includes both biofilm structural disruption and permeablisation of bacterial membranes.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Lactoferrina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Xilitol/farmacologia , Permeabilidade da Membrana Celular , Sinergismo Farmacológico , Humanos , Viabilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Infecção dos Ferimentos/microbiologia
8.
Nutr Metab (Lond) ; 5: 8, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18371214

RESUMO

BACKGROUND: This study evaluated a specialized whey fraction (Prolibratrade mark, high in leucine, bioactive peptides and milk calcium) for use as a dietary supplement to enhance weight loss. METHODS: This was a randomized, double-blind, parallel-arm, 12-week study. Caloric intake was reduced 500 calories per day. Subjects consumed Prolibra or an isocaloric ready-to-mix beverage 20 minutes before breakfast and 20 minutes before dinner. Body fat and lean muscle tissue were measured by dual-energy x-ray absorptiometry (DEXA). Body weight and anthropometric measurements were recorded every 4 weeks. Blood samples were taken at the beginning and end of the study. Statistical analyses were performed on all subjects that completed (completer analysis) and all subjects that lost at least 2.25 kg of body weight (responder analysis). Within group significance was determined at P < 0.05 using a two-tailed paired t-test and between group significance was determined using one way analysis of covariance with baseline data as a covariate. RESULTS: Both groups lost a significant amount of weight and the Prolibra group tended to lose more weight than the control group; however the amount of weight loss was not significantly different between groups after 12 weeks. Prolibra subjects lost significantly more body fat compared to control subjects for both the completer (2.81 vs. 1.62 kg P = 0.03) and responder (3.63 vs. 2.11 kg, P = 0.01) groups. Prolibra subjects lost significantly less lean muscle mass in the responder group (1.07 vs. 2.41 kg, P = 0.02). The ratio of fat to lean loss (kg fat lost/kg lean lost) was much larger for Prolibra subjects for both completer (3.75 vs. 1.05) and responder (3.39 vs. 0.88) groups. CONCLUSION: Subjects in both the control and treatment group lost a significant amount of weight with a 500 calorie reduced diet. Subjects taking Prolibra lost significantly more body fat and showed a greater preservation of lean muscle compared to subjects consuming the control beverage. Because subjects taking Prolibra lost 6.1% of their body fat mass, and because a 5% reduction of body fat mass has been shown to reduce the risk of obesity related disease, the results have practical significance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...