Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 38(20): 4708-4723, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29669747

RESUMO

Microglia are the resident immune cells of the CNS, and their response to infection, injury and disease is well documented. More recently, microglia have been shown to play a role in normal CNS development, with the fractalkine-Cx3cr1 signaling pathway of particular importance. This work describes the interaction between the light-sensitive photoreceptors and microglia during eye opening, a time of postnatal photoreceptor maturation. Genetic removal of Cx3cr1 (Cx3cr1GFP/GFP ) led to an early retinal dysfunction soon after eye opening [postnatal day 17 (P17)] and cone photoreceptor loss (P30 onward) in mice of either sex. This dysfunction occurred at a time when fractalkine expression was predominantly outer retinal, when there was an increased microglial presence near the photoreceptor layer and increased microglial-cone photoreceptor contacts. Photoreceptor maturation and outer segment elongation was coincident with increased opsin photopigment expression in wild-type retina, while this was aberrant in the Cx3cr1GFP/GFP retina and outer segment length was reduced. A beadchip array highlighted Cx3cr1 regulation of genes involved in the photoreceptor cilium, a key structure that is important for outer segment elongation. This was confirmed with quantitative PCR with specific cilium-related genes, Rpgr and Rpgrip1, downregulated at eye opening (P14). While the overall cilium structure was unaffected, expression of Rpgr, Rpgrip1, and centrin were restricted to more proximal regions of the transitional zone. This study highlighted a novel role for microglia in postnatal neuronal development within the retina, with loss of fractalkine-Cx3cr1 signaling leading to an altered distribution of cilium proteins, failure of outer segment elongation and ultimately cone photoreceptor loss.SIGNIFICANCE STATEMENT Microglia are involved in CNS development and disease. This work highlights the role of microglia in postnatal development of the light-detecting photoreceptor neurons within the mouse retina. Loss of the microglial Cx3cr1 signaling pathway resulted in specific alterations in the cilium, a key structure in photoreceptor outer segment elongation. The distribution of key components of the cilium transitional zone, Rpgr, Rpgrip1, and centrin, were altered in retinae lacking Cx3cr1 with reduced outer segment length and cone photoreceptor death observed at later postnatal ages. This work identifies a novel role for microglia in the postnatal maturation of retinal photoreceptors.


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Retina/crescimento & desenvolvimento , Retina/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto , Olho/crescimento & desenvolvimento , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Feminino , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia , Cílio Conector dos Fotorreceptores/fisiologia , Proteínas/genética , Proteínas/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia
2.
Physiol Rep ; 3(9)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26416974

RESUMO

Growth restriction impacts on offspring development and increases their risk of disease in adulthood which is exacerbated with "second hits." The aim of this study was to investigate if blood pressure, glucose tolerance, and skeletal muscle mitochondrial biogenesis were altered in 12-month-old male and female offspring with prenatal or postnatal growth restriction. Bilateral uterine vessel ligation induced uteroplacental insufficiency and growth restriction in offspring (Restricted). A sham surgery was also performed during pregnancy (Control) and some litters from sham mothers had their litter size reduced (Reduced litter), which restricted postnatal growth. Growth-restricted females only developed hypertension at 12 months, which was not observed in males. In Restricted females only homeostasis model assessment for insulin resistance was decreased, indicating enhanced hepatic insulin sensitivity, which was not observed in males. Plasma leptin was increased only in the Reduced males at 12 months compared to Control and Restricted males, which was not observed in females. Compared to Controls, leptin, ghrelin, and adiponectin were unaltered in the Restricted males and females, suggesting that at 12 months of age the reduction in body weight in the Restricted offspring is not a consequence of circulating adipokines. Skeletal muscle PGC-1α levels were unaltered in 12-month-old male and female rats, which indicate improvements in lean muscle mass by 12 months of age. In summary, sex strongly impacts the cardiometabolic effects of growth restriction in 12-month-old rats and it is females who are at particular risk of developing long-term hypertension following growth restriction.

3.
Neurobiol Dis ; 45(3): 887-96, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22198376

RESUMO

Huntington's disease (HD) is a progressive neurological disease characterised by motor dysfunction, cognitive impairment and personality changes. Previous work in HD patients and animal models of the disease has also highlighted retinal involvement. This study characterised the changes in retinal structure and function early within the progression of disease using the R6/1 mouse model of HD. The retinal phenotype was observed to occur at the same time in the disease process as other neurological deficits such as motor dysfunction (by 13 weeks of age). There was a specific functional deficit in cone response to the electroretinogram and using immunocytochemical techniques, this dysfunction was found to be likely due to a progressive and complete loss of cone opsin and transducin protein expression by 20 weeks of age. In addition, there was an increase in Müller cell gliosis and the presence of ectopic rod photoreceptor terminals. This retinal remodelling is also observed in downstream neurons, namely the rod and cone bipolar cells. While R6/1 mice exhibit significant retinal pathology simultaneously with other more classical HD alterations, this doesn't lead to extensive cell loss. These findings suggest that in HD, cone photoreceptors are initially targeted, possibly via dysregulation of protein expression or trafficking and that this process is subsequently accompanied by increased retinal stress and neuronal remodelling also involving the rod pathway. As retinal structure and connectivity are well characterised, the retina may provide a useful model tissue in which to characterise the mechanisms important in the development of neuronal pathology in HD.


Assuntos
Opsinas dos Cones/metabolismo , Regulação da Expressão Gênica/genética , Doença de Huntington/complicações , Neurônios/patologia , Doenças Retinianas/etiologia , Transducina/metabolismo , Fatores Etários , Análise de Variância , Animais , Morte Celular/genética , Modelos Animais de Doenças , Progressão da Doença , Eletrorretinografia , Gliose/genética , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fenótipo , Doenças Retinianas/patologia , Repetições de Trinucleotídeos/genética
4.
Prog Retin Eye Res ; 29(4): 284-311, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20380890

RESUMO

Renin-Angiotensin System is classically recognized for its role in the control of systemic blood pressure. However, the retina is recognized to have all the components necessary for angiotensin II formation, suggestive of a role for Angiotensin II in the retina that is independent of the systemic circulation. The most well described effects of Angiotensin II are on the retinal vasculature, with roles in vasoconstriction and angiogenesis. However, it is now emerging that Angiotensin II has roles in modulation of retinal function, possibly in regulating GABAergic amacrine cells. In addition, Angiotensin II is likely to have effects on glia. Angiotensin II has also been implicated in retinal vascular diseases such as Retinopathy of Prematurity and diabetic retinopathty, and more recently actions in choroidal neovascularizaiton and glaucoma have also emerged. The mechanisms by which Angiotensin II promotes angiogensis in retinal vascular diseases is indicative of the complexity of the RAS and the variety of cell types that it effects. Indeed, these diseases are not purely characterized by direct effects of Angiotensin II on the vasculature. In retinopathy of prematurity, for example, blockade of AT1 receptors prevents pathological angiogenesis, but also promotes revascularization of avascular regions of the retina. The primary site of action of Angiotensin II in this disease may be on retinal glia, rather than the vasculature. Indeed, blockade of AT1 receptors prevents glial loss and promotes the re-establishment of normal vessel growth. Blockade of RAS as a treatment for preventing the incidence and progression of diabetic retinopathy has also emerged based on a series of studies in animal models showing that blockade of the RAS prevents the development of a variety of vascular and neuronal deficits in this disease. Importantly these effects may be independent of actions on systemic blood pressure. This has culminated recently with the completion of several large multi-centre clinical trials that showed that blockade of the RAS may be of benefit in some at risk patients with diabetes. With the emergence of novel compounds targeting different aspects of the RAS even more effective ways of blocking the RAS may be possible in the future.


Assuntos
Neuroglia/metabolismo , Neurônios/metabolismo , Sistema Renina-Angiotensina/fisiologia , Retina/patologia , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Vasos Retinianos/metabolismo , Animais , Humanos , Modelos Biológicos , Neuroglia/patologia , Neurônios/patologia , Retina/metabolismo , Vasos Retinianos/patologia
5.
Adv Exp Med Biol ; 664: 385-91, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20238039

RESUMO

Extracellular ATP acts as a neurotransmitter in the central and peripheral nervous systems. In this review, the role of purinergic receptors in neuronal signaling and bi-directional glial-neuronal communication in the retina will be considered. There is growing evidence that a range of P2X and P2Y receptors are expressed on most classes of retinal neurons and that activation of P2 receptors modulates retinal function. Furthermore, neuronal control of glial function is achieved through neuronal release of ATP and activation of P2Y receptors expressed by Müller cells. Altered purinergic signaling in Müller cells has been implicated in gliotic changes in the diseased retina and furthermore, elevations in extracellular ATP may lead to apoptosis of retinal neurons.


Assuntos
Receptores Purinérgicos/metabolismo , Retina/metabolismo , Retina/fisiopatologia , Doenças Retinianas/metabolismo , Doenças Retinianas/fisiopatologia , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Transdução de Sinais
6.
Doc Ophthalmol ; 120(1): 67-86, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19763649

RESUMO

Retinopathy of prematurity is a devastating vascular disease of premature infants. A number of studies indicate that retinal function is affected in this disease. Using the rat model of oxygen-induced retinopathy, it is possible to explore more fully the complex relationship between neuronal, glial and vascular pathology in this condition. This review examines the structural and functional changes that occur in the rat retina following oxygen-induced retinopathy. We highlight that vascular pathology in rats is characterized by aberrant growth of blood vessels into the vitreous at the expense of blood vessel growth into the body of the retina. Moreover, amino acid neurochemistry, a tool for examining neuronal changes in a spatially complete manner reveals widespread changes in amacrine and bipolar cells. In addition, neurochemical anomalies within inner retinal neurons are highly correlated with the absence of retinal vessels. The key cell types that link blood flow with neuronal function are macroglia. Macroglia cells, which in the retina include astrocytes and Müller cells, are affected by oxygen-induced retinopathy. Astrocyte loss occurs in the peripheral retina, while Müller cells show signs of reactive gliosis that is highly localized to regions that are devoid of intraretinal blood vessels. Finally, we propose that treatments, such as blockade of the renin-angiotensin system, that not only targets pathological angiogenesis, but that also promotes re-vascularization of the retina are likely to prove important in the treatment of those with retinopathy of prematurity.


Assuntos
Modelos Animais de Doenças , Neuroglia/patologia , Oxigênio/toxicidade , Neovascularização Retiniana/etiologia , Neurônios Retinianos/patologia , Retinopatia da Prematuridade/etiologia , Animais , Humanos , Recém-Nascido , Ratos , Retina/efeitos dos fármacos , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Retinopatia da Prematuridade/patologia
7.
Clin Exp Optom ; 91(1): 67-77, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18045252

RESUMO

Retinal vascular diseases such as diabetic retinopathy and retinopathy of prematurity are major causes of visual loss. Although the focus of a great deal of research has been on the aetiology of vascular growth, it is now emerging that anomalies in other retinal cell types, especially glial cells, occur very early in the course of the disease. Glial cells have major roles in every stage of disease, from the earliest subtle variations in neural function, to the development of epi-retinal membranes and tractional detachment. Therefore, having a firm understanding of the function of retinal glia is important in our understanding of retinal disease and is crucial for the development of new treatment strategies.


Assuntos
Neuroglia/metabolismo , Neuroglia/patologia , Doenças Retinianas , Animais , Progressão da Doença , Humanos , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Índice de Gravidade de Doença , Transdução de Sinais/fisiologia
8.
Curr Pharm Des ; 13(26): 2699-712, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17897014

RESUMO

Diabetes is known to cause significant alterations in the retinal vasculature. Indeed, diabetic retinopathy is the leading cause of blindness in those of working age. Considerable evidence is emerging that indicates that retinal neurons are also altered during diabetes. Moreover, many types of neuronal deficits have been observed in animal models and patients prior to the onset of vascular compromise. Such clinical tools as the flash ERG, multifocal ERG, colour vision, contrast sensitivity and short-wavelength automated perimetry, all provide novel means whereby neuronal dysfunction can be detected at early stages of diabetes. The underlying mechanisms that lead to neuronal deficits are likely to be broad. Retinal glial cells play an essential role in maintaining the normal function of the retina. There is accumulating evidence that Müller cells are abnormal during diabetes. They are known to become gliotic, display altered potassium siphoning, glutamate and GABA uptake and are also known to express several modulators of angiogenesis. This review will examine the evidence that neurons and glia are altered during diabetes and the relationship these changes have with vascular compromise.


Assuntos
Retinopatia Diabética/patologia , Neuroglia/patologia , Neurônios/patologia , Animais , Retinopatia Diabética/fisiopatologia , Progressão da Doença , Humanos
9.
Cell Tissue Res ; 315(3): 305-10, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14727177

RESUMO

Mechanisms for the removal of glutamate are vital for maintaining normal function of the retina. Five excitatory amino acid transporters have been characterized to date from neuronal tissue, all of which are expressed within the retina except excitatory amino acid transporter 4 (EAAT4). In this study we examined the expression and localization of the glutamate transporter EAAT4 in the rat retina using RT-PCR and immunocytochemistry. RT-PCR using rat EAAT4 specific primers revealed a prominent 296-bp product in the retina, cortex and cerebellum. The identity of the EAAT4 fragment was confirmed by DNA sequencing. We examined the tissue expression levels of EAAT4 in cortex, retina and cerebellum using real-time PCR. The highest expression level was found in the cerebellum. Expression in the cortex was approximately 3.1% that of the cerebellum and the retina was found to have approximately 0.8% the total cerebellar EAAT4 content. In order to examine the specific cell types within the retina that express EAAT4, we performed immunocytochemistry using a rat EAAT4 specific antiserum. Cellular processes within the nerve fibre layer of the retina were intensely labelled for EAAT4. Double labelling EAAT4 with glial fibrillary acidic protein (GFAP) revealed extensive colocalization indicating that EAAT4 is localized within astrocytes within the retina. Double labelling of EAAT4 and the glutamate transporter EAAT1 (GLAST) revealed extensive colocalization suggesting that astrocytes in the retina express at least two types of glutamate transporters. These results suggest that astrocytes within the retina are well placed to provide mechanisms for glutamate removal as well as controlling cellular excitability.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Retina/metabolismo , Simportadores , Sistema X-AG de Transporte de Aminoácidos/genética , Animais , Astrócitos/citologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório , Técnica Indireta de Fluorescência para Anticorpo , Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática , Microscopia Confocal , RNA Mensageiro/metabolismo , Ratos , Retina/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
10.
Anal Chem ; 75(7): 1676-83, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12705602

RESUMO

We developed a polymerized crystalline colloidal array photonic material that senses metal cations in water at low concentrations (PCCACS). Metal cations such as Cu2+, Co2+, Ni2+, and Zn2+ bind to 8-hydroxyquinoline groups covalently attached to the PCCACS. At low metal concentrations (

Assuntos
Cátions Bivalentes/análise , Técnicas de Química Analítica/métodos , Metais/análise , Água/química , Coloides/química , Cor , Cobre/análise , Cobre/química , Cristalização , Hidrogéis/química , Metais/química , Estrutura Molecular , Oxiquinolina/química , Polímeros/química , Sensibilidade e Especificidade , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...