Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
RSC Chem Biol ; 5(1): 19-29, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179191

RESUMO

The emergence of Plasmodium parasite resistance to current front-line antimalarial treatments poses a serious threat to global malaria control and highlights the necessity for the development of therapeutics with novel targets and mechanisms of action. Plasmepsins IX and X (PMIX/PMX) have been recognised as highly promising targets in Plasmodium due to their contribution to parasite's pathogenicity. Recent research has demonstrated that dual PMIX/PMX inhibition results in the impairment of multiple parasite's life cycle stages, which is an important feature in drug resistance prevention. Herein we report novel hydroxyethylamine photoaffinity labelling (PAL) probes, designed for PMIX/PMX target engagement and proteomics experiments in Plasmodium parasites. The prepared probes have both a photoreactive group (diazirine or benzophenone) for covalent attachment to target proteins, and a terminal alkyne handle allowing their use in bioorthogonal ligation. One of the synthesised benzophenone probes was shown to be highly promising as demonstrated by its outstanding antimalarial potency (IC50 = 15 nM versus D10 P. falciparum) and its inhibitory effect against PfPMX in an enzymatic assay. Molecular docking and molecular dynamics studies show that the inclusion of the benzophenone and alkyne handle does not alter the binding mode compared to the parent compound. The photoaffinity probe can be used in future chemical proteomics studies to allow hydroxyethylamine drug scaffold target identification and validation in Plasmodium. We expect our findings to act as a tool for future investigations on PMIX/PMX inhibition in antimalarial drug discovery.

2.
ACS Infect Dis ; 9(2): 221-238, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36606559

RESUMO

Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Quinolonas , Antituberculosos/farmacologia , Citocromos/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Quinolonas/farmacologia
3.
Biology (Basel) ; 11(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892964

RESUMO

Antimalarials targeting the ubiquinol-oxidation (Qo) site of the Plasmodium falciparum bc1 complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Qo site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome bc1 complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for Plasmodial cytochrome bc1. Our crystallographic studies have enabled comparison of an in-silico homology docking model of P. falciparum with the mammalian's equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and P. falciparum Qi sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite bc1 with improved antimalarial properties.

4.
Proc Natl Acad Sci U S A ; 119(15): e2120003119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377795

RESUMO

Lymphatic filariasis is a vector-borne neglected tropical disease prioritized for global elimination. The filarial nematodes that cause the disease host a symbiotic bacterium, Wolbachia, which has been targeted using antibiotics, leading to cessation of parasite embryogenesis, waning of circulating larvae (microfilariae [mf]), and gradual cure of adult infection. One of the benefits of the anti-Wolbachia mode of action is that it avoids the rapid killing of mf, which can drive inflammatory adverse events. However, mf depleted of Wolbachia persist for several months in circulation, and thus patients treated with antibiotics are assumed to remain at risk for transmitting infections. Here, we show that Wolbachia-depleted mf rapidly lose the capacity to develop in the mosquito vector through a defect in exsheathment and inability to migrate through the gut wall. Transcriptomic and Western blotting analyses demonstrate that chitinase, an enzyme essential for mf exsheathment, is down-regulated in Wolbachia-depleted mf and correlates with their inability to exsheath and escape the mosquito midgut. Supplementation of in vitro cultures of Wolbachia-depleted mf with chitinase enzymes restores their ability to exsheath to a similar level to that observed in untreated mf. Our findings elucidate a mechanism of rapid transmission-blocking activity of filariasis after depletion of Wolbachia and adds to the broad range of biological processes of filarial nematodes that are dependent on Wolbachia symbiosis.


Assuntos
Antibacterianos , Quitinases , Filariose Linfática , Microfilárias , Wolbachia , Animais , Antibacterianos/farmacologia , Quitinases/genética , Filariose Linfática/transmissão , Humanos , Microfilárias/enzimologia , Microfilárias/crescimento & desenvolvimento , Microfilárias/microbiologia , Mosquitos Vetores/parasitologia , Wolbachia/efeitos dos fármacos , Wolbachia/genética
5.
Int J Antimicrob Agents ; 59(3): 106542, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35093538

RESUMO

A key element for the prevention and management of coronavirus disease 2019 is the development of effective therapeutics. Drug combination strategies offer several advantages over monotherapies. They have the potential to achieve greater efficacy, to increase the therapeutic index of drugs and to reduce the emergence of drug resistance. We assessed the in vitro synergistic interaction between remdesivir and ivermectin, both approved by the US Food and Drug Administration, and demonstrated enhanced antiviral activity against severe acute respiratory syndrome coronavirus-2. Whilst the in vitro synergistic activity reported here does not support the clinical application of this combination treatment strategy due to insufficient exposure of ivermectin in vivo, the data do warrant further investigation. Efforts to define the mechanisms underpinning the observed synergistic action could lead to the development of novel treatment strategies.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Ivermectina/farmacologia , Ivermectina/uso terapêutico
6.
ACS Med Chem Lett ; 12(9): 1421-1426, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34527179

RESUMO

Anti-Wolbachia therapy has been identified as a viable treatment for combating filarial diseases. Phenotypic screening revealed a series of pyrazolopyrimidine hits with potent anti-Wolbachia activity. This paper focuses on the exploration of the SAR for this chemotype, with improvement of metabolic stability and solubility profiles using medicinal chemistry approaches. Organic synthesis has enabled functionalization of the pyrazolopyrimidine core at multiple positions, generating a library of compounds of which many analogues possess nanomolar activity against Wolbachia in vitro with improved DMPK parameters. A lead compound, 15f, was selected for in vivo pharmacokinetics (PK) profiling in mice. The combination of potent anti-Wolbachia activity in two in vitro assessments plus the exceptional oral PK profiles in mice puts this lead compound in a strong position for in vivo proof-of-concept pharmacodynamics studies and demonstrates the strong potential for further optimization and development of this series for treatment of filariasis in the future.

7.
ACS Med Chem Lett ; 12(7): 1077-1085, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267877

RESUMO

Synthetic endoperoxide antimalarials, such as 1,2,4-trioxolanes and 1,2,4,5-tetraoxanes, are promising successors for current front-line antimalarials, semisynthetic artemisinin derivatives. However, limited solubility of second-generation analogues in biological-relevant media represents a barrier in clinical development. We present methodology for the synthesis of nonlinear analogues of second-generation tetraoxane antimalarials E209 and N205 to investigate reduced molecular symmetry on in vitro antimalarial activity and physicochemical properties. While maintaining good antimalarial activity and metabolic stability, head-to-head comparison of linear and nonlinear counterparts showed up to 10-fold improvement in FaSSIF solubility for three of the four analogues studied. Pharmacokinetic studies in rats comparing a selected nonlinear analogue 14a and its parent N205 showed improvement on oral absorption and exposure in vivo with more than double the AUC and a significant increase in oral bioavailability (76% versus 41%). These findings provide support for further in vivo efficacy studies in preclinical animal species.

8.
Trends Parasitol ; 37(12): 1068-1081, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34229954

RESUMO

The mutualistic association between Wolbachia endosymbionts and their filarial nematode hosts has been exploited as a validated drug target delivering macrofilaricidal outcomes. Limitations of existing antibiotics to scale-up have driven the search for new drugs, which are effective in shorter regimens of 7 days or less. Here, we review the last 14 years of anti-Wolbachia drug discovery by the anti-Wolbachia (A·WOL) consortium, which has screened more than two million compounds, delivering thousands of hit compounds. Refined screening models integrated with robust pharmacokinetic/pharmacodynamic (PK/PD) driven optimisation and selection strategies have delivered the first two drug candidates specifically designed to target Wolbachia. AWZ1066S and ABBV-4083 are currently progressing through clinical trials with the aim of delivering safe and effective macrofilaricides to support the elimination of onchocerciasis and lymphatic filariasis.


Assuntos
Filariose Linfática , Infecções por Nematoides , Oncocercose , Wolbachia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Descoberta de Drogas , Filariose Linfática/tratamento farmacológico , Humanos , Infecções por Nematoides/tratamento farmacológico , Oncocercose/tratamento farmacológico
9.
ACS Infect Dis ; 7(6): 1317-1331, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33352056

RESUMO

The rapidly growing COVID-19 pandemic is the most serious global health crisis since the "Spanish flu" of 1918. There is currently no proven effective drug treatment or prophylaxis for this coronavirus infection. While developing safe and effective vaccines is one of the key focuses, a number of existing antiviral drugs are being evaluated for their potency and efficiency against SARS-CoV-2 in vitro and in the clinic. Here, we review the significant potential of nitazoxanide (NTZ) as an antiviral agent that can be repurposed as a treatment for COVID-19. Originally, NTZ was developed as an antiparasitic agent especially against Cryptosporidium spp.; it was later shown to possess potent activity against a broad range of both RNA and DNA viruses, including influenza A, hepatitis B and C, and coronaviruses. Recent in vitro assessment of NTZ has confirmed its promising activity against SARS-CoV-2 with an EC50 of 2.12 µM. Here we examine its drug properties, antiviral activity against different viruses, clinical trials outcomes, and mechanisms of antiviral action from the literature in order to highlight the therapeutic potential for the treatment of COVID-19. Furthermore, in preliminary PK/PD analyses using clinical data reported in the literature, comparison of simulated TIZ (active metabolite of NTZ) exposures at two doses with the in vitro potency of NTZ against SARS-CoV-2 gives further support for drug repurposing with potential in combination chemotherapy approaches. The review concludes with details of second generation thiazolides under development that could lead to improved antiviral therapies for future indications.


Assuntos
COVID-19 , Criptosporidiose , Cryptosporidium , Reposicionamento de Medicamentos , Humanos , Nitrocompostos , Pandemias , SARS-CoV-2 , Tiazóis
10.
medRxiv ; 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511548

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a global pandemic by the World Health Organisation and urgent treatment and prevention strategies are needed. Many clinical trials have been initiated with existing medications, but assessments of the expected plasma and lung exposures at the selected doses have not featured in the prioritisation process. Although no antiviral data is currently available for the major phenolic circulating metabolite of nitazoxanide (known as tizoxanide), the parent ester drug has been shown to exhibit in vitro activity against SARS-CoV-2. Nitazoxanide is an anthelmintic drug and its metabolite tizoxanide has been described to have broad antiviral activity against influenza and other coronaviruses. The present study used physiologically-based pharmacokinetic (PBPK) modelling to inform optimal doses of nitazoxanide capable of maintaining plasma and lung tizoxanide exposures above the reported nitazoxanide 90% effective concentration (EC 90 ) against SARS-CoV-2. METHODS: A whole-body PBPK model was constructed for oral administration of nitazoxanide and validated against available tizoxanide pharmacokinetic data for healthy individuals receiving single doses between 500 mg SARS-CoV-2 4000 mg with and without food. Additional validation against multiple-dose pharmacokinetic data when given with food was conducted. The validated model was then used to predict alternative doses expected to maintain tizoxanide plasma and lung concentrations over the reported nitazoxanide EC 90 in >90% of the simulated population. Optimal design software PopDes was used to estimate an optimal sparse sampling strategy for future clinical trials. RESULTS: The PBPK model was validated with AAFE values between 1.01 SARS-CoV-2 1.58 and a difference less than 2-fold between observed and simulated values for all the reported clinical doses. The model predicted optimal doses of 1200 mg QID, 1600 mg TID, 2900 mg BID in the fasted state and 700 mg QID, 900 mg TID and 1400 mg BID when given with food, to provide tizoxanide plasma and lung concentrations over the reported in vitro EC 90 of nitazoxanide against SARS-CoV-2. For BID regimens an optimal sparse sampling strategy of 0.25, 1, 3 and 12h post dose was estimated. CONCLUSION: The PBPK model predicted that it was possible to achieve plasma and lung tizoxanide concentrations, using proven safe doses of nitazoxanide, that exceed the EC 90 for SARS-CoV-2. The PBPK model describing tizoxanide plasma pharmacokinetics after oral administration of nitazoxanide was successfully validated against clinical data. This dose prediction assumes that the tizoxanide metabolite has activity against SARS-CoV-2 similar to that reported for nitazoxanide, as has been reported for other viruses. The model and the reported dosing strategies provide a rational basis for the design (optimising plasma and lung exposures) of future clinical trials of nitazoxanide in the treatment or prevention of SARS-CoV-2 infection.

11.
Clin Pharmacol Ther ; 108(4): 775-790, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32438446

RESUMO

There is a rapidly expanding literature on the in vitro antiviral activity of drugs that may be repurposed for therapy or chemoprophylaxis against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). However, this has not been accompanied by a comprehensive evaluation of the target plasma and lung concentrations of these drugs following approved dosing in humans. Accordingly, concentration 90% (EC90 ) values recalculated from in vitro anti-SARS-CoV-2 activity data was expressed as a ratio to the achievable maximum plasma concentration (Cmax ) at an approved dose in humans (Cmax /EC90 ratio). Only 14 of the 56 analyzed drugs achieved a Cmax /EC90 ratio above 1. A more in-depth assessment demonstrated that only nitazoxanide, nelfinavir, tipranavir (ritonavir-boosted), and sulfadoxine achieved plasma concentrations above their reported anti-SARS-CoV-2 activity across their entire approved dosing interval. An unbound lung to plasma tissue partition coefficient (Kp Ulung ) was also simulated to derive a lung Cmax /half-maximal effective concentration (EC50 ) as a better indicator of potential human efficacy. Hydroxychloroquine, chloroquine, mefloquine, atazanavir (ritonavir-boosted), tipranavir (ritonavir-boosted), ivermectin, azithromycin, and lopinavir (ritonavir-boosted) were all predicted to achieve lung concentrations over 10-fold higher than their reported EC50 . Nitazoxanide and sulfadoxine also exceeded their reported EC50 by 7.8-fold and 1.5-fold in lung, respectively. This analysis may be used to select potential candidates for further clinical testing, while deprioritizing compounds unlikely to attain target concentrations for antiviral activity. Future studies should focus on EC90 values and discuss findings in the context of achievable exposures in humans, especially within target compartments, such as the lungs, in order to maximize the potential for success of proposed human clinical trials.


Assuntos
Antivirais/administração & dosagem , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Pneumonia Viral/tratamento farmacológico , Antivirais/sangue , COVID-19 , Infecções por Coronavirus/sangue , Humanos , Pandemias , Pneumonia Viral/sangue , SARS-CoV-2
12.
Malar J ; 19(1): 182, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414377

RESUMO

BACKGROUND: Pulmonary oedema (PE) is a serious complication of Plasmodium falciparum malaria which can lead to acute lung injury in severe cases. Lung macrophages are activated during malaria infection due to a complex host-immune response. The molecular basis for macrophage polarization is still unclear but understanding the predominant subtypes could lead to new therapeutic strategies where the diseases present with lung involvement. The present study was designed to study the polarization of lung macrophages, as M1 or M2 macrophages, in the lungs of severe P. falciparum malaria patients, with and without evidence of PE. METHODS: Lung tissue samples, taken from patients who died from severe P. falciparum malaria, were categorized into severe malaria with PE and without PE (non-PE). Expression of surface markers (CD68+, all macrophages; CD40+, M1 macrophage; and CD163+, M2 macrophage) on activated lung macrophages was used to quantify M1/M2 macrophage subtypes. RESULTS: Lung injury was demonstrated in malaria patients with PE. The expression of CD40 (M1 macrophage) was prominent in the group of severe P. falciparum malaria patients with PE (63.44 ± 1.98%), compared to non-PE group (53.22 ± 3.85%, p < 0.05), whereas there was no difference observed for CD163 (M2 macrophage) between PE and non-PE groups. CONCLUSIONS: The study demonstrates M1 polarization in lung tissues from severe P. falciparum malaria infections with PE. Understanding the nature of macrophage characterization in malaria infection may provide new insights into therapeutic approaches that could be deployed to reduce lung damage in severe P. falciparum malaria.


Assuntos
Macrófagos/metabolismo , Malária Falciparum/fisiopatologia , Edema Pulmonar/fisiopatologia , Adulto , Humanos , Malária Falciparum/complicações , Edema Pulmonar/parasitologia , Adulto Jovem
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 234: 118257, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32208355

RESUMO

The rapid detection of ß-lactamases (Blas) and effective screening of Bla inhibitors are critically important and urgent for solving antibiotic resistance and improving precision medicine. Here a novel fluorescent probe CDC-559 was designed and synthesized, which can be used for the selective and direct detection of AmpC Blas. More importantly, it can realize screening the Bla inhibitors with sulbactam sodium and tazobactam as model compounds, and the half-maximal inhibitory concentration are 0.279 µM and 0.053 µM, respectively. CDC-559 can be applied not only to examine the resistance of bacterial strains, but also to categorize its mode of action specifically, which is consistent with the essential result of the Blas. The research suggests that CDC-559 probe has tremendous potential in the rapid detection of AmpC Blas as well as the strains with AmpC-encoded gene, which is instructive in promoting better antibiotic stewardship practices and developments.


Assuntos
Proteínas de Bactérias/metabolismo , Corantes Fluorescentes/química , Inibidores de beta-Lactamases/análise , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Concentração Inibidora 50 , Cinética , Limite de Detecção , Testes de Sensibilidade Microbiana , Fenótipo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Inibidores de beta-Lactamases/química
14.
PLoS Negl Trop Dis ; 14(1): e0007957, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986143

RESUMO

The elimination of filarial diseases such as onchocerciasis and lymphatic filariasis is hampered by the lack of a macrofilaricidal-adult worm killing-drug. In the present study, we tested the in vivo efficacy of AN11251, a boron-pleuromutilin that targets endosymbiotic Wolbachia bacteria from filarial nematodes and compared its efficacy to doxycycline and rifampicin. Doxycycline and rifampicin were previously shown to deplete Wolbachia endosymbionts leading to a permanent sterilization of the female adult filariae and adult worm death in human clinical studies. Twice-daily oral treatment of Litomosoides sigmodontis-infected mice with 200 mg/kg AN11251 for 10 days achieved a Wolbachia depletion > 99.9% in the adult worms, exceeding the Wolbachia reduction by 10-day treatments with bioequivalent human doses of doxycycline and a similar reduction as high-dose rifampicin (35 mg/kg). Wolbachia reductions of > 99% were also accomplished by 14 days of oral AN11251 at a lower twice-daily dose (50 mg/kg) or once-per-day 200 mg/kg AN11251 treatments. The combinations tested of AN11251 with doxycycline had no clear beneficial impact on Wolbachia depletion, achieving a > 97% Wolbachia reduction with 7 days of treatment. These results indicate that AN11251 is superior to doxycycline and comparable to high-dose rifampicin in the L. sigmodontis mouse model, allowing treatment regimens as short as 10-14 days. Therefore, AN11251 represents a promising pre-clinical candidate that was identified in the L. sigmodontis model, and could be further evaluated and developed as potential clinical candidate for human lymphatic filariasis and onchocerciasis.


Assuntos
Antibacterianos/farmacologia , Diterpenos/farmacologia , Filariose/tratamento farmacológico , Filarioidea/efeitos dos fármacos , Compostos Policíclicos/farmacologia , Wolbachia/efeitos dos fármacos , Animais , Boro , Doxiciclina/farmacologia , Feminino , Filariose/microbiologia , Filarioidea/microbiologia , Camundongos Endogâmicos BALB C , Rifampina/farmacologia , Simbiose , Pleuromutilinas
15.
Cell Host Microbe ; 27(1): 93-103.e4, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31901523

RESUMO

In high-transmission regions, we expect parasite lineages within complex malaria infections to be unrelated due to parasite inoculations from different mosquitoes. This project was designed to test this prediction. We generated 485 single-cell genome sequences from fifteen P. falciparum malaria patients from Chikhwawa, Malawi-an area of intense transmission. Patients harbored up to seventeen unique parasite lineages. Surprisingly, parasite lineages within infections tend to be closely related, suggesting that superinfection by repeated mosquito bites is rarer than co-transmission of parasites from a single mosquito. Both closely and distantly related parasites comprise an infection, suggesting sequential transmission of complex infections between multiple hosts. We identified tetrads and reconstructed parental haplotypes, which revealed the inbred ancestry of infections and non-Mendelian inheritance. Our analysis suggests strong barriers to secondary infection and outbreeding amongst malaria parasites from a high transmission setting, providing unexpected insights into the biology and transmission of malaria.


Assuntos
Malária Falciparum/transmissão , Plasmodium falciparum/genética , Animais , Biodiversidade , Evolução Clonal , Coinfecção/parasitologia , Culicidae/parasitologia , Variação Genética , Genômica , Haplótipos , Humanos , Plasmodium falciparum/isolamento & purificação
16.
Artigo em Inglês | MEDLINE | ID: mdl-31611354

RESUMO

Clinical studies of new antitubercular drugs are costly and time-consuming. Owing to the extensive tuberculosis (TB) treatment periods, the ability to identify drug candidates based on their predicted clinical efficacy is vital to accelerate the pipeline of new therapies. Recent failures of preclinical models in predicting the activity of fluoroquinolones underline the importance of developing new and more robust predictive tools that will optimize the design of future trials. Here, we used high-content imaging screening and pharmacodynamic intracellular (PDi) modeling to identify and prioritize fluoroquinolones for TB treatment. In a set of studies designed to validate this approach, we show moxifloxacin to be the most effective fluoroquinolone, and PDi modeling-based Monte Carlo simulations accurately predict negative culture conversion (sputum sterilization) rates compared to eight independent clinical trials. In addition, PDi-based simulations were used to predict the risk of relapse. Our analyses show that the duration of treatment following culture conversion can be used to predict the relapse rate. These data further support that PDi-based modeling offers a much-needed decision-making tool for the TB drug development pipeline.


Assuntos
Antituberculosos/farmacologia , Antituberculosos/farmacocinética , Fluoroquinolonas/farmacologia , Fluoroquinolonas/farmacocinética , Modelos Biológicos , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/metabolismo , Linhagem Celular , Simulação por Computador , Técnicas de Apoio para a Decisão , Desenvolvimento de Medicamentos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Método de Monte Carlo , Moxifloxacina/farmacocinética , Moxifloxacina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Células THP-1 , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
17.
PLoS Negl Trop Dis ; 13(8): e0007636, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381563

RESUMO

Depletion of Wolbachia endosymbionts of human pathogenic filariae using 4-6 weeks of doxycycline treatment can lead to permanent sterilization and adult filarial death. We investigated the anti-Wolbachia drug candidate ABBV-4083 in the Litomosoides sigmodontis rodent model to determine Wolbachia depletion kinetics with different regimens. Wolbachia reduction occurred in mice as early as 3 days after the initiation of ABBV-4083 treatment and continued throughout a 10-day treatment period. Importantly, Wolbachia levels continued to decline after a 5-day-treatment from 91.5% to 99.9% during a 3-week washout period. In jirds, two weeks of ABBV-4083 treatment (100mg/kg once-per-day) caused a >99.9% Wolbachia depletion in female adult worms, and the kinetics of Wolbachia depletion were recapitulated in peripheral blood microfilariae. Similar to Wolbachia depletion, inhibition of embryogenesis was time-dependent in ABBV-4083-treated jirds, leading to a complete lack of late embryonic stages (stretched microfilariae) and lack of peripheral microfilariae in 5/6 ABBV-4083-treated jirds by 14 weeks after treatment. Twice daily treatment in comparison to once daily treatment with ABBV-4083 did not significantly improve Wolbachia depletion. Moreover, up to 4 nonconsecutive daily treatments within a 14-dose regimen did not significantly erode Wolbachia depletion. Within the limitations of an animal model that does not fully recapitulate human filarial disease, our studies suggest that Wolbachia depletion should be assessed clinically no earlier than 3-4 weeks after the end of treatment, and that Wolbachia depletion in microfilariae may be a viable surrogate marker for the depletion within adult worms. Furthermore, strict daily adherence to the dosing regimen with anti-Wolbachia candidates may not be required, provided that the full regimen is subsequently completed.


Assuntos
Antibacterianos/farmacologia , Filarioidea/microbiologia , Microfilárias/microbiologia , Wolbachia/efeitos dos fármacos , Wolbachia/fisiologia , Animais , Doxiciclina/farmacologia , Feminino , Filariose , Filarioidea/efeitos dos fármacos , Gerbillinae , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Microfilárias/efeitos dos fármacos , Microfilárias/embriologia , Modelos Animais
18.
Nat Commun ; 10(1): 3226, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324806

RESUMO

Primaquine (PQ) is an essential antimalarial drug but despite being developed over 70 years ago, its mode of action is unclear. Here, we demonstrate that hydroxylated-PQ metabolites (OH-PQm) are responsible for efficacy against liver and sexual transmission stages of Plasmodium falciparum. The antimalarial activity of PQ against liver stages depends on host CYP2D6 status, whilst OH-PQm display direct, CYP2D6-independent, activity. PQ requires hepatic metabolism to exert activity against gametocyte stages. OH-PQm exert modest antimalarial efficacy against parasite gametocytes; however, potency is enhanced ca.1000 fold in the presence of cytochrome P450 NADPH:oxidoreductase (CPR) from the liver and bone marrow. Enhancement of OH-PQm efficacy is due to the direct reduction of quinoneimine metabolites by CPR with the concomitant and excessive generation of H2O2, leading to parasite killing. This detailed understanding of the mechanism paves the way to rationally re-designed 8-aminoquinolines with improved pharmacological profiles.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Primaquina/metabolismo , Primaquina/farmacologia , Aminoquinolinas/farmacologia , Medula Óssea/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Sistema Enzimático do Citocromo P-450 , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Malária Falciparum/tratamento farmacológico , NADP , Farmacocinética
19.
Pharmaceutics ; 11(6)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200534

RESUMO

Increasing rifampicin (RIF) dosages could significantly reduce tuberculosis (TB) treatment durations. Understanding the pharmacokinetic-pharmacodynamics (PK-PD) of increasing RIF dosages could inform clinical regimen selection. We used intracellular PD modelling (PDi) to predict clinical outcomes, primarily time to culture conversion, of increasing RIF dosages. PDi modelling utilizes in vitro-derived measurements of intracellular (macrophage) and extracellular Mycobacterium tuberculosis sterilization rates to predict the clinical outcomes of RIF at increasing doses. We evaluated PDi simulations against recent clinical data from a high dose (35 mg/kg per day) RIF phase II clinical trial. PDi-based simulations closely predicted the observed time-to-patient culture conversion status at eight weeks (hazard ratio: 2.04 (predicted) vs. 2.06 (observed)) for high dose RIF-based treatments. However, PDi modelling was less predictive of culture conversion status at 26 weeks for high-dosage RIF (99% predicted vs. 81% observed). PDi-based simulations indicate that increasing RIF beyond 35 mg/kg/day is unlikely to significantly improve culture conversion rates, however, improvements to other clinical outcomes (e.g., relapse rates) cannot be ruled out. This study supports the value of translational PDi-based modelling in predicting culture conversion rates for antitubercular therapies and highlights the potential value of this platform for the improved design of future clinical trials.

20.
SLAS Discov ; 24(5): 537-547, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30958712

RESUMO

The Anti- Wolbachia (A·WOL) consortium at the Liverpool School of Tropical Medicine (LSTM) has partnered with the Global High-Throughput Screening (HTS) Centre at AstraZeneca to create the first anthelmintic HTS for neglected tropical diseases (NTDs). The A·WOL consortium aims to identify novel macrofilaricidal drugs targeting the essential bacterial symbiont ( Wolbachia) of the filarial nematodes causing onchocerciasis and lymphatic filariasis. Working in collaboration, we have validated a robust high-throughput assay capable of identifying compounds that selectively kill Wolbachia over the host insect cell. We describe the development and validation process of this complex, phenotypic high-throughput assay and provide an overview of the primary outputs from screening the AstraZeneca library of 1.3 million compounds.


Assuntos
Antibacterianos/farmacologia , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Wolbachia/efeitos dos fármacos , Antibacterianos/química , Técnicas de Cultura de Células/métodos , Descoberta de Drogas , Filariose Linfática/tratamento farmacológico , Humanos , Citometria por Imagem , Oncocercose/tratamento farmacológico , Wolbachia/patogenicidade , Wolbachia/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...