Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 43(1): 264-274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37498757

RESUMO

Analysis of relations between objects and comprehension of abstract concepts in the surgical video is important in AI-augmented surgery. However, building models that integrate our knowledge and understanding of surgery remains a challenging endeavor. In this paper, we propose a novel way to integrate conceptual knowledge into temporal analysis tasks using temporal concept graph networks. In the proposed networks, a knowledge graph is incorporated into the temporal video analysis of surgical notions, learning the meaning of concepts and relations as they apply to the data. We demonstrate results in surgical video data for tasks such as verification of the critical view of safety, estimation of the Parkland grading scale as well as recognizing instrument-action-tissue triplets. The results show that our method improves the recognition and detection of complex benchmarks as well as enables other analytic applications of interest.


Assuntos
Redes Neurais de Computação , Procedimentos Cirúrgicos Operatórios , Gravação em Vídeo
3.
Colorectal Dis ; 24(5): 601-610, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35142008

RESUMO

AIM: We sought to identify genetic differences between right- and left-sided colon cancers and using these differences explain lower survival in right-sided cancers. METHOD: A retrospective review of patients diagnosed with colon cancer was performed using The Cancer Genome Atlas, a cancer genetics registry with patient and tumour data from 20 North American institutions. The primary outcome was 5-year overall survival. Predictors for survival were identified using directed acyclic graphs and Cox proportional hazards models. RESULTS: A total of 206 right- and 214 left-sided colon cancer patients with 84 recorded deaths were identified. The frequency of mutated alleles differed significantly in 12 of 25 genes between right- and left-sided tumours. Right-sided tumours had worse survival with a hazard ratio of 1.71 (95% confidence interval 1.10-2.64, P = 0.017). The total effect of the genetic loci on survival showed five genes had a sizeable effect on survival: DNAH5, MUC16, NEB, SMAD4, and USH2A. Lasso-penalized Cox regression selected 13 variables for the highest-performing model, which included cancer stage, positive resection margin, and mutated alleles at nine genes: MUC16, USH2A, SMAD4, SYNE1, FLG, NEB, TTN, OBSCN, and DNAH5. Post-selection inference demonstrated that mutations in MUC16 (P = 0.01) and DNAH5 (P = 0.02) were particularly predictive of 5-year overall survival. CONCLUSIONS: Our study showed that genetic mutations may explain survival differences between tumour sites. Further studies on larger patient populations may identify other genes, which could form the foundation for more precise prognostication and treatment decisions beyond current rudimentary TNM staging.


Assuntos
Neoplasias do Colo , Neoplasias do Colo/patologia , Genótipo , Humanos , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos
4.
Surg Endosc ; 36(9): 6832-6840, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35031869

RESUMO

BACKGROUND: Operative courses of laparoscopic cholecystectomies vary widely due to differing pathologies. Efforts to assess intra-operative difficulty include the Parkland grading scale (PGS), which scores inflammation from the initial view of the gallbladder on a 1-5 scale. We investigated the impact of PGS on intra-operative outcomes, including laparoscopic duration, attainment of the critical view of safety (CVS), and gallbladder injury. We additionally trained an artificial intelligence (AI) model to identify PGS. METHODS: One surgeon labeled surgical phases, PGS, CVS attainment, and gallbladder injury in 200 cholecystectomy videos. We used multilevel Bayesian regression models to analyze the PGS's effect on intra-operative outcomes. We trained AI models to identify PGS from an initial view of the gallbladder and compared model performance to annotations by a second surgeon. RESULTS: Slightly inflamed gallbladders (PGS-2) minimally increased duration, adding 2.7 [95% compatibility interval (CI) 0.3-7.0] minutes to an operation. This contrasted with maximally inflamed gallbladders (PGS-5), where on average 16.9 (95% CI 4.4-33.9) minutes were added, with 31.3 (95% CI 8.0-67.5) minutes added for the most affected surgeon. Inadvertent gallbladder injury occurred in 25% of cases, with a minimal increase in gallbladder injury observed with added inflammation. However, up to a 28% (95% CI - 2, 63) increase in probability of a gallbladder hole during PGS-5 cases was observed for some surgeons. Inflammation had no substantial effect on whether or not a surgeon attained the CVS. An AI model could reliably (Krippendorff's α = 0.71, 95% CI 0.65-0.77) quantify inflammation when compared to a second surgeon (α = 0.82, 95% CI 0.75-0.87). CONCLUSIONS: An AI model can identify the degree of gallbladder inflammation, which is predictive of cholecystectomy intra-operative course. This automated assessment could be useful for operating room workflow optimization and for targeted per-surgeon and per-resident feedback to accelerate acquisition of operative skills.


Assuntos
Colecistectomia Laparoscópica , Colecistite , Doenças da Vesícula Biliar , Inteligência Artificial , Teorema de Bayes , Colecistectomia , Colecistectomia Laparoscópica/efeitos adversos , Colecistite/cirurgia , Vesícula Biliar/patologia , Vesícula Biliar/cirurgia , Doenças da Vesícula Biliar/patologia , Doenças da Vesícula Biliar/cirurgia , Humanos , Inflamação/etiologia , Inflamação/patologia
5.
J Surg Oncol ; 124(2): 221-230, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34245578

RESUMO

Surgical data science (SDS) aims to improve the quality of interventional healthcare and its value through the capture, organization, analysis, and modeling of procedural data. As data capture has increased and artificial intelligence (AI) has advanced, SDS can help to unlock augmented and automated coaching, feedback, assessment, and decision support in surgery. We review major concepts in SDS and AI as applied to surgical education and surgical oncology.


Assuntos
Inteligência Artificial , Ciência de Dados , Educação de Pós-Graduação em Medicina/métodos , Oncologia Cirúrgica/educação , Competência Clínica , Sistemas de Apoio a Decisões Clínicas , Europa (Continente) , Humanos , América do Norte , Procedimentos Cirúrgicos Operatórios/educação , Procedimentos Cirúrgicos Operatórios/métodos
6.
Surg Endosc ; 35(9): 4918-4929, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34231065

RESUMO

BACKGROUND: The growing interest in analysis of surgical video through machine learning has led to increased research efforts; however, common methods of annotating video data are lacking. There is a need to establish recommendations on the annotation of surgical video data to enable assessment of algorithms and multi-institutional collaboration. METHODS: Four working groups were formed from a pool of participants that included clinicians, engineers, and data scientists. The working groups were focused on four themes: (1) temporal models, (2) actions and tasks, (3) tissue characteristics and general anatomy, and (4) software and data structure. A modified Delphi process was utilized to create a consensus survey based on suggested recommendations from each of the working groups. RESULTS: After three Delphi rounds, consensus was reached on recommendations for annotation within each of these domains. A hierarchy for annotation of temporal events in surgery was established. CONCLUSIONS: While additional work remains to achieve accepted standards for video annotation in surgery, the consensus recommendations on a general framework for annotation presented here lay the foundation for standardization. This type of framework is critical to enabling diverse datasets, performance benchmarks, and collaboration.


Assuntos
Aprendizado de Máquina , Consenso , Técnica Delphi , Humanos , Inquéritos e Questionários
7.
Comput Assist Surg (Abingdon) ; 26(1): 58-68, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34126014

RESUMO

Annotation of surgical video is important for establishing ground truth in surgical data science endeavors that involve computer vision. With the growth of the field over the last decade, several challenges have been identified in annotating spatial, temporal, and clinical elements of surgical video as well as challenges in selecting annotators. In reviewing current challenges, we provide suggestions on opportunities for improvement and possible next steps to enable translation of surgical data science efforts in surgical video analysis to clinical research and practice.

8.
J Surg Res ; 264: A1-A9, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33743995

RESUMO

Artificial intelligence (AI) has made increasing inroads in clinical medicine. In surgery, machine learning-based algorithms are being studied for use as decision aids in risk prediction and even for intraoperative applications, including image recognition and video analysis. While AI has great promise in surgery, these algorithms come with a series of potential pitfalls that cannot be ignored as hospital systems and surgeons consider implementing these technologies. The aim of this review is to discuss the progress, promise, and pitfalls of AI in surgery.


Assuntos
Cirurgia Geral/métodos , Aprendizado de Máquina/tendências , Tomada de Decisão Clínica/métodos , Cirurgia Geral/tendências , Humanos , Medição de Risco/métodos
9.
Surg Endosc ; 35(7): 4008-4015, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32720177

RESUMO

BACKGROUND: Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic myotomy (POEM). METHODS: POEM videos were collected from Massachusetts General and Showa University Koto Toyosu Hospitals. Videos were labeled by surgeons with the following ground truth phases: (1) Submucosal injection, (2) Mucosotomy, (3) Submucosal tunnel, (4) Myotomy, and (5) Mucosotomy closure. The deep-learning CV model-Convolutional Neural Network (CNN) plus Long Short-Term Memory (LSTM)-was trained on 30 videos to create POEMNet. We then used POEMNet to identify operative phases in the remaining 20 videos. The model's performance was compared to surgeon annotated ground truth. RESULTS: POEMNet's overall phase identification accuracy was 87.6% (95% CI 87.4-87.9%). When evaluated on a per-phase basis, the model performed well, with mean unweighted and prevalence-weighted F1 scores of 0.766 and 0.875, respectively. The model performed best with longer phases, with 70.6% accuracy for phases that had a duration under 5 min and 88.3% accuracy for longer phases. DISCUSSION: A deep-learning-based approach to CV, previously successful in laparoscopic video phase identification, translates well to endoscopic procedures. With continued refinements, AI could contribute to intra-operative decision-support systems and post-operative risk prediction.


Assuntos
Acalasia Esofágica , Laparoscopia , Miotomia , Cirurgia Endoscópica por Orifício Natural , Inteligência Artificial , Acalasia Esofágica/cirurgia , Humanos , Redes Neurais de Computação
10.
Surgery ; 169(5): 1253-1256, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33272610

RESUMO

The fields of computer vision (CV) and artificial intelligence (AI) have undergone rapid advancements in the past decade, many of which have been applied to the analysis of intraoperative video. These advances are driven by wide-spread application of deep learning, which leverages multiple layers of neural networks to teach computers complex tasks. Prior to these advances, applications of AI in the operating room were limited by our relative inability to train computers to accurately understand images with traditional machine learning (ML) techniques. The development and refining of deep neural networks that can now accurately identify objects in images and remember past surgical events has sparked a surge in the applications of CV to analyze intraoperative video and has allowed for the accurate identification of surgical phases (steps) and instruments across a variety of procedures. In some cases, CV can even identify operative phases with accuracy similar to surgeons. Future research will likely expand on this foundation of surgical knowledge using larger video datasets and improved algorithms with greater accuracy and interpretability to create clinically useful AI models that gain widespread adoption and augment the surgeon's ability to provide safer care for patients everywhere.


Assuntos
Inteligência Artificial , Cirurgia Geral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...