Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 5(10): e13488, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20976105

RESUMO

BACKGROUND: HIRA (or Hir) proteins are conserved histone chaperones that function in multi-subunit complexes to mediate replication-independent nucleosome assembly. We have previously demonstrated that the Schizosaccharomyces pombe HIRA proteins, Hip1 and Slm9, form a complex with a TPR repeat protein called Hip3. Here we have identified a new subunit of this complex. METHODOLOGY/PRINCIPAL FINDINGS: To identify proteins that interact with the HIRA complex, rapid affinity purifications of Slm9 were performed. Multiple components of the chaperonin containing TCP-1 complex (CCT) and the 19S subunit of the proteasome reproducibly co-purified with Slm9, suggesting that HIRA interacts with these complexes. Slm9 was also found to interact with a previously uncharacterised protein (SPBC947.08c), that we called Hip4. Hip4 contains a HRD domain which is a characteristic of the budding yeast and human HIRA/Hir-binding proteins, Hpc2 and UBN1. Co-precipitation experiments revealed that Hip4 is stably associated with all of the other components of the HIRA complex and deletion of hip4(+) resulted in the characteristic phenotypes of cells lacking HIRA function, such as temperature sensitivity, an elongated cell morphology and hypersensitivity to the spindle poison, thiabendazole. Moreover, loss of Hip4 function alleviated the heterochromatic silencing of reporter genes located in the mating type locus and centromeres and was associated with increased levels of non-coding transcripts derived from centromeric repeat sequences. Hip4 was also found to be required for the distinct form of silencing that controls the expression of Tf2 LTR retrotransposons. CONCLUSIONS/SIGNIFICANCE: Overall, these results indicate that Hip4 is an integral component of the HIRA complex that is required for transcriptional silencing at multiple loci.


Assuntos
Inativação Gênica , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Cromatografia Líquida , Primers do DNA , Dados de Sequência Molecular , Fases de Leitura Aberta , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
2.
Mol Cell Biol ; 29(18): 5158-67, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19620282

RESUMO

The assembly of nucleosomes by histone chaperones is an important component of transcriptional regulation. Here, we have assessed the global roles of the HIRA histone chaperone in Schizosaccharomyces pombe. Microarray analysis indicates that inactivation of the HIRA complex results in increased expression of at least 4% of fission yeast genes. HIRA-regulated genes overlap with those which are normally repressed in vegetatively growing cells, such as targets of the Clr6 histone deacetylase and silenced genes located in subtelomeric regions. HIRA is also required for silencing of all 13 intact copies of the Tf2 long terminal repeat (LTR) retrotransposon. However, the role of HIRA is not restricted to bona fide promoters, because HIRA also suppresses noncoding transcripts from solo LTR elements and spurious antisense transcripts from cryptic promoters associated with transcribed regions. Furthermore, the HIRA complex is essential in the absence of the quality control provided by nuclear exosome-mediated degradation of illegitimate transcripts. This suggests that HIRA restricts genomic accessibility, and consistent with this, the chromosomes of cells lacking HIRA are more susceptible to genotoxic agents that cause double-strand breaks. Thus, the HIRA histone chaperone is required to maintain the protective functions of chromatin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Antissenso/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Dano ao DNA , Elementos de DNA Transponíveis/genética , Regulação para Baixo , Perfilação da Expressão Gênica , Inativação Gênica/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Mutagênicos/farmacologia , Mutação/genética , Proteínas Nucleares/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Telômero/metabolismo , Sequências Repetidas Terminais/genética , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
3.
J Mol Biol ; 381(3): 529-39, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18614176

RESUMO

Archaeal family B DNA polymerases bind tightly to template-strand uracil and stall replication on encountering the pro-mutagenic base. This article describes an X-ray crystal structure, at 2.8 A resolution, of Thermococcus gorgonarius polymerase in complex with a DNA primer-template containing uracil in the single-stranded region. The DNA backbone is distorted to position the uracil deeply within a pocket, located in the amino-terminal domain of the polymerase. Specificity arises from a combination of hydrogen bonds between the protein backbone and uracil, with the pocket shaped to prevent the stable binding of the four standard DNA bases. Strong interactions are seen with the two phosphates that flank the uracil and the structure gives clues concerning the coupling of uracil binding to the halting of replication. The importance of key amino acids, identified by the analysis of the structure and their conservation between archaeal polymerases, was confirmed by site-directed mutagenesis. The crystal structure of V93Q, a polymerase variant that no longer recognises uracil, is also reported, explaining the V93Q phenotype by the steric exclusion of uracil from the pocket.


Assuntos
Proteínas Arqueais/química , DNA Polimerase Dirigida por DNA/química , Modelos Moleculares , Thermococcus/enzimologia , Uracila/química , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/metabolismo , Ligação de Hidrogênio , Dados de Sequência Molecular , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Moldes Genéticos , Uracila/metabolismo
4.
Nucleic Acids Res ; 36(3): 705-11, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18032433

RESUMO

Family B DNA polymerases from archaea such as Pyrococcus furiosus, which live at temperatures approximately 100 degrees C, specifically recognize uracil in DNA templates and stall replication in response to this base. Here it is demonstrated that interaction with uracil is not restricted to hyperthermophilic archaea and that the polymerase from mesophilic Methanosarcina acetivorans shows identical behaviour. The family B DNA polymerases replicate the genomes of archaea, one of the three fundamental domains of life. This publication further shows that the DNA replicating polymerases from the other two domains, bacteria (polymerase III) and eukaryotes (polymerases delta and epsilon for nuclear DNA and polymerase gamma for mitochondrial) are also unable to recognize uracil. Uracil occurs in DNA as a result of deamination of cytosine, either in G:C base-pairs or, more rapidly, in single stranded regions produced, for example, during replication. The resulting G:U mis-pairs/single stranded uracils are promutagenic and, unless repaired, give rise to G:C to A:T transitions in 50% of the progeny. The confinement of uracil recognition to polymerases of the archaeal domain is discussed in terms of the DNA repair pathways necessary for the elimination of uracil.


Assuntos
Archaea/enzimologia , Proteínas Arqueais/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Uracila/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , DNA/química , DNA Polimerase III/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Escherichia coli/enzimologia , Humanos , Methanosarcina/enzimologia , Pyrococcus furiosus/enzimologia , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA