Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 123(34): 7282-7289, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31429279

RESUMO

Boron dipyrromethene (BODIPY) molecular rotors have shown sensitivity toward viscosity, polarity, and temperature. Here, we report a 1,3,5,7-tetramethyl-8-phenyl-BODIPY modified with a polyethylene glycol (PEG) chain, for temperature sensing and live cell imaging. This new PEG-BODIPY dye presents an increase in nonradiative decay as temperature increases, which directly influences its lifetime. This change in lifetime is dependent on changes in both temperature and viscosity at low viscosity values, but is only dependent on temperature at high viscosity values. The dependence of fluorescence lifetime with temperature allows for temperature monitoring in vitro and in cells, with sub degree resolution. When in contact with cells, the PEG-BODIPY spontaneously penetrates and stains the cell but not the nucleus. Furthermore, no significant cell toxicity was found even at 100 µM concentration. Using fluorescence lifetime imaging microscopy (FLIM), we were able to observe the changes in the lifetime of PEG-BODIPY within the cell at different temperatures. The use of FLIM and molecular probes such as PEG-BODIPY can provide important information about cellular temperature and heat dissipation upon medically relevant stimuli, such as radiofrequency ablation and photodynamic therapy.


Assuntos
Compostos de Boro/análise , Corantes Fluorescentes/análise , Microscopia de Fluorescência/métodos , Termometria/métodos , Técnicas Biossensoriais/métodos , Temperatura Corporal , Compostos de Boro/química , Linhagem Celular , Corantes Fluorescentes/química , Humanos , Imagem Óptica/métodos , Polietilenoglicóis/análise , Polietilenoglicóis/química , Temperatura , Viscosidade
2.
Nanomedicine (Lond) ; 13(23): 2981-2993, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30501557

RESUMO

AIM: Glycoconjugated C60 derivatives are of particular interest as potential cancer targeting agents due to an upregulated metabolic glucose demand, especially in the case of pancreatic adenocarcinoma and its dense stroma, which is known to be driven by a subset of pancreatic stellate cells. MATERIALS & METHODS: Herein, we describe the synthesis and biological characterization of a hexakis-glucosamine C60 derivative (termed 'Sweet-C60'). RESULTS: Synthesized fullerene derivative predominantly accumulates in the nucleus of pancreatic stellate cells; is inherently nontoxic up to concentrations of 1 mg/ml; and is photoactive when illuminated with blue and green light, allowing its use as a photodynamic therapy agent. CONCLUSION: Obtained glycoconjugated nanoplatform is a promising nanotherapeutic for pancreatic cancer.


Assuntos
Fulerenos/uso terapêutico , Glicoconjugados/síntese química , Neoplasias Pancreáticas/tratamento farmacológico , Células Estreladas do Pâncreas/efeitos dos fármacos , Fármacos Fotossensibilizantes/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Anticorpos/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Fulerenos/efeitos adversos , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/efeitos adversos , Neoplasias Pancreáticas
3.
Transl Oncol ; 11(4): 864-872, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29763773

RESUMO

Noninvasive radiofrequency-induced (RF) hyperthermia has been shown to increase the perfusion of chemotherapeutics and nanomaterials through cancer tissue in ectopic and orthotopic murine tumor models. Additionally, mild hyperthermia (37°C-45°C) has previously shown a synergistic anticancer effect when used with standard-of-care chemotherapeutics such as gemcitabine and Abraxane. However, RF hyperthermia treatment schedules remain unoptimized, and the mechanisms of action of hyperthermia and how they change when treating various tumor phenotypes are poorly understood. Therefore, pretreatment screening of tumor phenotypes to identify key tumors that are predicted to respond more favorably to hyperthermia will provide useful mechanistic data and may improve therapeutic outcomes. Herein, we identify key biophysical tumor characteristics in order to predict the outcome of combinational RF and chemotherapy treatment. We demonstrate that ultrasound imaging using Doppler mode can be utilized to predict the response of combinational RF and chemotherapeutic therapy in a murine 4T1 breast cancer model.

4.
Transl Oncol ; 11(3): 664-671, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29621664

RESUMO

Patients with pancreatic ductal adenocarcinomas (PDAC) have one of the poorest survival rates of all cancers. The main reason for this is related to the unique tumor stroma and poor vascularization of PDAC. As a consequence, chemotherapeutic drugs, such as nab-paclitaxel and gemcitabine, cannot efficiently penetrate into the tumor tissue. Non-invasive radiofrequency (RF) mild hyperthermia treatment was proposed as a synergistic therapy to enhance drug uptake into the tumor by increasing tumor vascular inflow and perfusion, thus, increasing the effect of chemotherapy. RF-induced hyperthermia is a safer and non-invasive technique of tumor heating compared to conventional contact heating procedures. In this study, we investigated the short- and long-term effects (~20 days and 65 days, respectively) of combination chemotherapy and RF hyperthermia in an orthotopic PDAC model in mice. The benefit of nab-paclitaxel and gemcitabine treatment was confirmed in mice; however, the effect of treatment was statistically insignificant in comparison to saline treated mice during long-term observation. The benefit of RF was minimal in the short-term and completely insignificant during long-term observation.

5.
Sci Rep ; 8(1): 3474, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472563

RESUMO

Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response. More specifically we show that multi- and singlet-dose RFT promote an increase in tumor volume in immune competent Balb/c mice, which does not occur in athymic nude models. Further leukocyte subset analysis at 24, 48, and 120 hours after a single RFT show a rapid increase in tumoral trafficking of CD4+ and CD8+ T-cells 24 hours post-treatment. Additional serum cytokine analysis reveals an increase in numerous pro-inflammatory cytokines and chemokines associated with enhanced T-cell trafficking. Overall, these data demonstrate that non-invasive RFT could be an effective immunomodulatory strategy in solid tumors, especially for enhancing the tumoral trafficking of lymphocytes, which is currently a major hindrance of numerous cancer immunotherapeutic strategies.


Assuntos
Neoplasias da Mama/radioterapia , Neoplasias Mamárias Experimentais/radioterapia , Terapia por Radiofrequência , Linfócitos T/efeitos da radiação , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos da radiação , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos da radiação , Citocinas/sangue , Feminino , Humanos , Hipertermia Induzida , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Linfócitos T/imunologia
6.
Sci Rep ; 7(1): 11299, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900126

RESUMO

Surgical margin status in cancer surgery represents an important oncologic parameter affecting overall prognosis. The risk of disease recurrence is minimized and survival often prolonged if margin-negative resection can be accomplished during cancer surgery. Unfortunately, negative margins are not always surgically achievable due to tumor invasion into adjacent tissues or involvement of critical vasculature. Herein, we present a novel intra-operative device created to facilitate a uniform and mild heating profile to cause hyperthermic destruction of vessel-encasing tumors while safeguarding the encased vessel. We use pancreatic ductal adenocarcinoma as an in vitro and an in vivo cancer model for these studies as it is a representative model of a tumor that commonly involves major mesenteric vessels. In vitro data suggests that mild hyperthermia (41-46 °C for ten minutes) is an optimal thermal dose to induce high levels of cancer cell death, alter cancer cell's proteomic profiles and eliminate cancer stem cells while preserving non-malignant cells. In vivo and in silico data supports the well-known phenomena of a vascular heat sink effect that causes high temperature differentials through tissues undergoing hyperthermia, however temperatures can be predicted and used as a tool for the surgeon to adjust thermal doses delivered for various tumor margins.


Assuntos
Hipertermia Induzida , Neoplasias/patologia , Neoplasias/terapia , Neovascularização Patológica/terapia , Animais , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia Combinada , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos , Camundongos , Neoplasias/cirurgia , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/cirurgia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Células Estreladas do Pâncreas/metabolismo , Suínos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
7.
Sci Rep ; 7(1): 3437, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611425

RESUMO

Although chemotherapy combined with radiofrequency exposure has shown promise in cancer treatment by coupling drug cytotoxicity with thermal ablation or thermally-induced cytotoxicity, limited access of the drug to tumor loci in hypo-vascularized lesions has hampered clinical application. We recently showed that high-intensity short-wave capacitively coupled radiofrequency (RF) electric-fields may reach inaccessible targets in vivo. This non-invasive RF combined with gemcitabine (Gem) chemotherapy enhanced drug uptake and effect in pancreatic adenocarcinoma (PDAC), notorious for having poor response and limited therapeutic options, but without inducing thermal injury. We hypothesize that the enhanced cytotoxicity derives from RF-facilitated drug transport in the tumor microenvironment. We propose an integrated experimental/computational approach to evaluate chemotherapeutic response combined with RF-induced phenotypic changes in tissue with impaired transport. Results show that RF facilitates diffusive transport in 3D cell cultures representing hypo-vascularized lesions, enhancing drug uptake and effect. Computational modeling evaluates drug vascular extravasation and diffusive transport as key RF-modulated parameters, with transport being dominant. Assessment of hypothetical schedules following current clinical protocol for Stage-IV PDAC suggests that unresponsive lesions may be growth-restrained when exposed to Gem plus RF. Comparison of these projections to experiments in vivo indicates that synergy may result from RF-induced cell phenotypic changes enhancing drug transport and cytotoxicity, thus providing a potential baseline for clinically-focused evaluation.


Assuntos
Adenocarcinoma/tratamento farmacológico , Tratamento Farmacológico/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Terapia por Radiofrequência/métodos , Adenocarcinoma/terapia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Simulação por Computador , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacocinética , Desoxicitidina/uso terapêutico , Humanos , Imageamento Tridimensional/métodos , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/terapia , Gencitabina
8.
IEEE J Transl Eng Health Med ; 5: 1500109, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507824

RESUMO

The Kanzius non-invasive radio-frequency hyperthermia system (KNiRFH) has been investigated as a treatment option for hepatic hyperthermia cancer therapy. The treatment involves exposing the patient to an external high-power RF (13.56 MHz) electric field, whereby the propagating waves penetrate deep into the tumor causing targeted heating based on differential tissue dielectric properties. However, a comprehensive examination of the Kanzius system alongside any associated toxicities and its ability to induce hepatic hyperthermia in larger animal models, such as swine, are the subjects of the work herein. Ten Yucatan female mini-swine were treated with the KNiRFH system. Two of the pigs were treated a total of 17 times over a five-week period to evaluate short- and long-term KNiRFH-associated toxicities. The remaining eight pigs were subjected to single exposure sessions to evaluate heating efficacy in liver tissue. Our goal was to achieve a liver target temperature of 43°C and to evaluate toxicities and burns post-treatment. Potential toxicities were evaluated by contrast-enhanced MRI of the upper abdomen and blood work, including complete metabolic panel, complete blood count, and liver enzymes. The permittivities of subcutaneous fat and liver were also measured, which were used to calculate tissue specific absorption rates (SAR). Our results indicate negligible KNiRFH-associated toxicities; however, due to fat overheating, liver tissue temperature did not exceed 38.5°C. This experimental limitation was corroborated by tissue permittivity and SAR calculations of subcutaneous fat and liver. Significant steps must be taken to either reduce subcutaneous fat heating or increase localized heating, potentially through the use of KNiRFH-active nanomaterials, such as gold nanoparticles or single-walled carbon nanotubes, which have previously shown promising results in murine cancer models.

9.
Sci Rep ; 7: 43961, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287120

RESUMO

Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias da Mama/terapia , Tratamento Farmacológico/métodos , Hipertermia Induzida/métodos , Ondas de Rádio , Animais , Antineoplásicos/administração & dosagem , Modelos Animais de Doenças , Camundongos , Imagem Óptica , Coloração e Rotulagem
10.
Biomaterials ; 108: 129-42, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27627810

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic/stromal reaction, which contributes to the poor clinical outcome of this disease. Therefore, greater understanding of the stroma development and tumor-stroma interactions is highly required. Pancreatic stellate cells (PSC) are myofibroblast-like cells located in exocrine areas of the pancreas, which as a result of inflammation produced by PDAC migrate and accumulate in the tumor mass, secreting extracellular matrix components and producing the dense PDAC stroma. Currently, only a few orthotopic or ectopic animal tumor models, where PDAC cells are injected into the pancreas or subcutaneous tissue layer, or genetically engineered animals offer tumors that encompass some stromal component. Herein, we report generation of a simple 3D PDAC in vitro micro-tumor model without an addition of external extracellular matrix, which encompasses a rich, dense and active stromal compartment. We have achieved this in vitro model by incorporating PSCs into 3D PDAC cell culture using a modified hanging drop method. It is now known that PSCs are the principal source of fibrosis in the stroma and interact closely with cancer cells to create a tumor facilitatory environment that stimulates local and distant tumor growth. The 3D micro-stroma models are highly reproducible with excellent uniformity, which can be used for PDAC-stroma interaction analysis and high throughput automated drug-screening assays. Additionally, the increased expression of collagenous regions means that molecular based perfusion and cytostaticity of gemcitabine is decreased in our Pancreatic adenocarcinoma stroma spheroids (PDAC-SS) model when compared to spheroids grown without PSCs. We believe this model will allow an improved knowledge of PDAC biology and has the potential to provide an insight into pathways that may be therapeutically targeted to inhibit PSC activation, thereby inhibiting the development of fibrosis in PDAC and interrupting PSC-PDAC cell interactions so as to inhibit cancer progression.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Impressão Tridimensional , Esferoides Celulares/patologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Carcinoma Ductal Pancreático/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Neoplasias Pancreáticas/fisiopatologia , Células Estromais/patologia , Engenharia Tecidual/instrumentação
11.
Cancer Nanotechnol ; 7: 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27429662

RESUMO

Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987-989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure.

12.
Nanomedicine ; 12(7): 1843-1851, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27068156

RESUMO

Cross-system comparisons of drug delivery vectors are essential to ensure optimal design. An in-vitro experimental protocol is presented that separates the role of the delivery vector from that of its cargo in determining the cell response, thus allowing quantitative comparison of different systems. The technique is validated through benchmarking of the dose-response of human fibroblast cells exposed to the cationic molecule, polyethylene imine (PEI); delivered as a free molecule and as a cargo on the surface of CdSe nanoparticles and Silica microparticles. The exposure metrics are converted to a delivered dose with the transport properties of the different scale systems characterized by a delivery time, τ. The benchmarking highlights an agglomeration of the free PEI molecules into micron sized clusters and identifies the metric determining cell death as the total number of PEI molecules presented to cells, determined by the delivery vector dose and the surface density of the cargo.


Assuntos
Benchmarking , Sistemas de Liberação de Medicamentos , Nanopartículas , Fibroblastos , Vetores Genéticos , Humanos , Polietilenoimina , Dióxido de Silício
13.
Tissue Eng Part C Methods ; 22(4): 312-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26830354

RESUMO

In vitro characterization of tumor cell biology or of potential anticancer drugs is usually performed using tumor cell lines cultured as a monolayer. However, it has been previously shown that three-dimensional (3D) organization of the tumor cells is important to provide insights on tumor biology and transport of therapeutics. Several methods to create 3D tumors in vitro have been proposed, with hanging drop technique being the most simple and, thus, most frequently used. However, in many cell lines this method has failed to form the desired 3D tumor structures. The aim of this study was to design and test an easy-to-use and highly reproducible modification of the hanging drop method for tumor sphere formation by adding methylcellulose polymer. Most pancreatic cancer cells do not form cohesive and manageable spheres when the original hanging drop method is used, thus we investigated these cell lines for our modified hanging drop method. The spheroids produced by this improved technique were analyzed by histology, light microscopy, immunohistochemistry, and scanning electron microscopy. Results show that using the proposed simple method; we were able to produce uniform spheroids for all five of the tested human pancreatic cancer cell lines; Panc-1, BxPC-3, Capan-1, MiaPaCa-2, and AsPC-1. We believe that this method can be used as a reliable and reproducible technique to make 3D cancer spheroids for use in tumor biology research and evaluation of therapeutic responses, and for the development of bio-artificial tissues.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Pancreáticas , Esferoides Celulares , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas
14.
PLoS One ; 10(8): e0136382, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26308617

RESUMO

Herein, we present a novel imaging platform to study the biological effects of non-invasive radiofrequency (RF) electric field cancer hyperthermia. This system allows for real-time in vivo intravital microscopy (IVM) imaging of radiofrequency-induced biological alterations such as changes in vessel structure and drug perfusion. Our results indicate that the IVM system is able to handle exposure to high-power electric-fields without inducing significant hardware damage or imaging artifacts. Furthermore, short durations of low-power (< 200 W) radiofrequency exposure increased transport and perfusion of fluorescent tracers into the tumors at temperatures below 41°C. Vessel deformations and blood coagulation were seen for tumor temperatures around 44°C. These results highlight the use of our integrated IVM-RF imaging platform as a powerful new tool to visualize the dynamics and interplay between radiofrequency energy and biological tissues, organs, and tumors.


Assuntos
Diagnóstico por Imagem , Hipertermia Induzida , Microscopia Intravital/métodos , Neoplasias Mamárias Animais/patologia , Ondas de Rádio , Algoritmos , Animais , Feminino , Imunofluorescência , Corantes Fluorescentes/farmacocinética , Neoplasias Mamárias Animais/terapia , Camundongos , Distribuição Tecidual
15.
Sci Rep ; 5: 12083, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26165830

RESUMO

The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.


Assuntos
Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Terapia por Radiofrequência , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Humanos , Fenótipo
16.
ACS Nano ; 8(7): 6693-700, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24923782

RESUMO

Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used in this endeavor. Mass measurement with single-cell resolution provides statistically robust assessments of cell heterogeneity, while the addition of a temporal element allows assessment of separate processes leading to deconvolution of the effects of particle supply and biological response. We provide a specific demonstration of the approach, in vitro, through time-resolved measurement of fibroblast cell (HFF-1) death caused by exposure to cationic nanoparticles. The results show that heterogeneity in cell area is the major source of variability with area-dependent nanoparticle capture rates determining the time of cell death and hence the form of the exposure­response characteristic. Moreover, due to the particulate nature of the nanoparticle suspension, there is a reduction in the particle concentration over the course of the experiment, eventually causing saturation in the level of measured biological outcome. A generalized mathematical description of the system is proposed, based on a simple model of particle depletion from a finite supply reservoir. This captures the essential aspects of the nanoparticle­cell interaction dynamics and accurately predicts the population exposure­response curves from individual cell heterogeneity distributions.


Assuntos
Nanopartículas/toxicidade , Transporte Biológico , Morte Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Nanopartículas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...