Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Sci Total Environ ; 927: 172278, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583631

RESUMO

The Wells-Riley model is extensively used for retrospective and prospective modelling of the risk of airborne transmission of infection in indoor spaces. It is also used when examining the efficacy of various removal and deactivation methods for airborne infectious aerosols in the indoor environment, which is crucial when selecting the most effective infection control technologies. The problem is that the large variation in viral load between individuals makes the Wells-Riley model output very sensitive to the input parameters and may yield a flawed prediction of risk. The absolute infection risk estimated with this model can range from nearly 0 % to 100 % depending on the viral load, even when all other factors, such as removal mechanisms and room geometry, remain unchanged. We therefore propose a novel method that removes this sensitivity to viral load. We define a quanta-independent maximum absolute before-after difference in infection risk that is independent of quanta factors like viral load, physical activity, or the dose-response relationships. The input data needed for a non-steady-state calculation are just the removal rates, room volume, and occupancy duration. Under steady-state conditions the approach provides an elegant solution that is only dependent on removal mechanisms before and after applying infection control measures. We applied this method to compare the impact of relative humidity, ventilation rate and its effectiveness, filtering efficiency, and the use of ultraviolet germicidal irradiation on the infection risk. The results demonstrate that the method provides a comprehensive understanding of the impact of infection control strategies on the risk of airborne infection, enabling rational decisions to be made regarding the most effective strategies in a specific context. The proposed method thus provides a practical tool for mitigation of airborne infection risk.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Aerossóis/análise , COVID-19/prevenção & controle , COVID-19/transmissão , Ventilação , Carga Viral , Modelos Teóricos , Controle de Infecções/métodos , Medição de Risco
2.
Environ Sci Technol ; 58(15): 6693-6703, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577981

RESUMO

A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants' age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.


Assuntos
Poluição do Ar em Ambientes Fechados , Ozônio , Humanos , Adolescente , Esqualeno/análise , Ozônio/análise , Poluição do Ar em Ambientes Fechados/análise , Pele/química , Oxidantes
4.
Environ Sci Technol ; 58(10): 4704-4715, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38326946

RESUMO

Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone-human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h-1) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25-30 ppb ozone levels, humans generated 0.2-7.7 × 1012 of 1-3 nm, 0-7.2 × 1012 of 3-10 nm, and 0-1.3 × 1012 of 10-20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone-human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Humanos , Tamanho da Partícula , Ozônio/análise , Ventilação/métodos , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise
5.
Environ Sci Technol ; 58(4): 1986-1997, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237915

RESUMO

Humans are the primary sources of CO2 and NH3 indoors. Their emission rates may be influenced by human physiological and psychological status. This study investigated the impact of physiological and psychological engagements on the human emissions of CO2 and NH3. In a climate chamber, we measured CO2 and NH3 emissions from participants performing physical activities (walking and running at metabolic rates of 2.5 and 5 met, respectively) and psychological stimuli (meditation and cognitive tasks). Participants' physiological responses were recorded, including the skin temperature, electrodermal activity (EDA), and heart rate, and then analyzed for their relationship with CO2 and NH3 emissions. The results showed that physiological engagement considerably elevated per-person CO2 emission rates from 19.6 (seated) to 46.9 (2.5 met) and 115.4 L/h (5 met) and NH3 emission rates from 2.7 to 5.1 and 8.3 mg/h, respectively. CO2 emissions reduced when participants stopped running, whereas NH3 emissions continued to increase owing to their distinct emission mechanisms. Psychological engagement did not significantly alter participants' emissions of CO2 and NH3. Regression analysis revealed that CO2 emissions were predominantly correlated with heart rate, whereas NH3 emissions were mainly associated with skin temperature and EDA. These findings contribute to a deeper understanding of human metabolic emissions of CO2 and NH3.


Assuntos
Amônia , Dióxido de Carbono , Humanos
6.
Sci Total Environ ; 884: 163805, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142023

RESUMO

A four-week-long field intervention experiment was conducted in twenty-nine bedrooms with extract ventilation systems and air inlet vents. During the first week no interventions took place. In the three weeks that followed, each participant slept for one week under a low, moderate, and high ventilation rate condition in a balanced order. These conditions were established by covertly altering the fan speed of the exhaust ventilation system without changing other settings. Participants were not informed when or even whether the changes to bedroom ventilation would be executed. The bedroom environmental quality was monitored continuously and sleep quality was monitored using wrist-worn trackers. Tests of cognitive performance were conducted in the evening and morning. In twelve bedrooms where clear differences between the three ventilation conditions occurred, as indicated by the measured CO2 concentrations, participants had significantly less deep sleep, more light sleep and more awakenings at lower ventilation rate conditions. In twenty-three bedrooms where a clear difference in ventilation rate between the high and low ventilation conditions was observed, as confirmed by the measured CO2 concentrations, the deep sleep was significantly shorter in the low ventilation rate condition. No differences in cognitive performance between conditions were observed. At lower ventilation rate conditions, the concentrations of CO2 increased, as did the relative humidity, while bedroom temperatures remained unchanged. The present results, which were obtained in actual bedrooms, confirm the findings in previous studies of a positive effect of increased ventilation on sleep quality. Further studies with larger populations and better control of bedroom conditions, particularly ventilation, are required.


Assuntos
Poluição do Ar em Ambientes Fechados , Qualidade do Sono , Humanos , Método Simples-Cego , Dióxido de Carbono/análise , Sono , Temperatura , Ventilação/métodos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise
7.
Environ Int ; 176: 107944, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37216835

RESUMO

This study monitored indoor environmental data in 144 classrooms in 31 schools in the Midwestern United States for two consecutive days every fall, winter, and spring during a two-year period; 3,105 pupils attended classrooms where the measurements were conducted. All classrooms were ventilated with mechanical systems that had recirculation; there were no operable exterior windows or doors. The daily absence rate at the student level and demographic data at the classroom level were collected. The overall mean ventilation rate, using outdoor air, was 5.5 L/s per person (the corresponding mean carbon dioxide concentrations were < 2,000 ppm), and the mean indoor PM2.5 was 3.6 µg/m3. The annual illness-related absence rate at the classroom level was extracted from the student-level absence data and regressed on measured indoor environmental parameters. Significant associations were found. Every 1 L/s per person increase in ventilation rate was associated with a 5.59 decrease in days with absences per year. This corresponds to a 0.15% increase in the annual daily attendance rate. Every additional 1 µg/m3 of indoor PM2.5 was associated with a 7.37 increase in days with absences per year. This corresponds to a 0.19% decrease in the annual daily attendance rate. No other relationships were significant. Present results agree with the previously demonstrated benefits of reduced absence rates when classroom ventilation is improved and provide additional evidence on the potential benefits of reducing indoor inhalable particles. Overall, reduced absence rates are expected to provide socioeconomic benefits and benefits for academic achievements, while higher ventilation rates and reduced particle levels will also contribute to reduced health risks, including those related to airborne respiratory pathogens.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/análise , Respiração , Instituições Acadêmicas , Ventilação/métodos , Meio-Oeste dos Estados Unidos , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos
8.
Int J Occup Med Environ Health ; 36(2): 177-191, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36861764

RESUMO

OBJECTIVES: To investigate the effect of CO2 during sleep on next-morning cognitive performance in young schoolchildren, the authors performed a double-blind fully balanced crossover placebo-controlled study. MATERIAL AND METHODS: The authors included 36 children aged 10-12 years in the climate chamber. The children slept at 21°C in 6 groups each at 3 different conditions separated by 7 days in a random order. Conditions were as follows: high ventilation with CO2 at 700 ppm, high ventilation with added pure CO2 at 2000-3000 ppm, and reduced ventilation with CO2 at 2-3000 ppm and bioeffluents. Children were subjected to a digital cognitive test battery (CANTAB) in the evening prior to sleep and on the next morning after breakfast. Sleep quality was monitored with wrist actigraphs. RESULTS: There were no significant exposure effects on cognitive performance. Sleep efficiency was significantly lower at high ventilation with CO2 at 700 ppm which is considered to be a chance effect. No other effects were seen, and no relation between air quality during sleep and next-morning cognitive performance was observed in the children emitting an estimated 10 lCO2/h per child. CONCLUSIONS: No effect of CO2 during sleep was found on next day cognition. The children were awakened in the morning, and spent from 45-70 min in well-ventilated rooms before they were tested. Hence, it cannot be precluded that the children have benefitted from the good indoor air quality conditions before and during the testing period. The slightly better sleep efficiency during high CO2 concentrations might be a chance finding. Hence, replication is needed in actual bedrooms controlling for other external factors before any generalizations can be made. Int J Occup Med Environ Health. 2023;36(2):177-91.


Assuntos
Poluição do Ar em Ambientes Fechados , Dióxido de Carbono , Criança , Humanos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono/análise , Cognição , Estudos Cross-Over , Sono , Ventilação , Método Duplo-Cego
9.
Clin Infect Dis ; 76(10): 1854-1859, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36763042

RESUMO

This is an account that should be heard of an important struggle: the struggle of a large group of experts who came together at the beginning of the COVID-19 pandemic to warn the world about the risk of airborne transmission and the consequences of ignoring it. We alerted the World Health Organization about the potential significance of the airborne transmission of SARS-CoV-2 and the urgent need to control it, but our concerns were dismissed. Here we describe how this happened and the consequences. We hope that by reporting this story we can raise awareness of the importance of interdisciplinary collaboration and the need to be open to new evidence, and to prevent it from happening again. Acknowledgement of an issue, and the emergence of new evidence related to it, is the first necessary step towards finding effective mitigation solutions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias/prevenção & controle , Organização Mundial da Saúde , Sociedades
10.
Environ Res ; 216(Pt 4): 114770, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370817

RESUMO

BACKGROUND: Aircraft cabins are special environments. Passengers sit in close proximity in a space with low pressure that they cannot leave. The cabin is ventilated with a mixture of outside and recirculated air. The volume of outside air impacts the carbon footprint of flying. Higher recirculation air rates could be considered to save energy and divert less kerosene from producing thrust. OBJECTIVES: To investigate whether higher recirculation air rates in aircraft cabins negatively affect passengers' health and well-being and if occupancy plays a role in this. METHODS: In a 2 (occupancy: full and half-occupied) X 4 (ventilation regime) factorial design with stratified randomization, participants were exposed in an aircraft segment in a low-pressure tube during a 4-h simulated flight. Ventilation regimes consisted of increasing proportions of recirculated air up to a maximum CO2 concentration of 4200 ppm. Participants rated comfort, health symptoms, and sleepiness multiple times. Heart rate (variability), as stress marker, was measured continuously. RESULTS: 559 persons representative of flight passengers regarding age (M = 42.7, SD = 15.9) and sex (283 men) participated. ANCOVA results showed hardly any effect of both factors on self-reported health symptoms, strong main effects of occupancy on comfort measures, and interaction effects for sleepiness and physiological stress parameters: Participants in the half-occupied cabin hardly reacted to increased recirculation air rates and show overall more favorable responses. Participants in the fully occupied cabin reported higher sleepiness and had stress reactions when the recirculation air rate was high. DISCUSSION: This large-scale RCT shows the importance of occupancy, a previously neglected factor in indoor air research. The proximity of other people seems to increase stress and exacerbate reactions to air quality. Further studies on causal pathways are needed to determine if recirculation air rates can be increased to reduce the carbon footprint of flying without detrimental effects on passengers.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Masculino , Humanos , Sonolência , Ventilação , Aeronaves
11.
Build Environ ; 228: 109924, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36531865

RESUMO

Predictive models for airborne infection risk have been extensively used during the pandemic, but there is yet still no consensus on a common approach, which may create misinterpretation of results among public health experts and engineers designing building ventilation. In this study we applied the latest data on viral load, aerosol droplet sizes and removal mechanisms to improve the Wells Riley model by introducing the following novelties i) a new model to calculate the total volume of respiratory fluid exhaled per unit time ii) developing a novel viral dose-based generation rate model for dehydrated droplets after expiration iii) deriving a novel quanta-RNA relationship for various strains of SARS-CoV-2 iv) proposing a method to account for the incomplete mixing conditions. These new approaches considerably changed previous estimates and allowed to determine more accurate average quanta emission rates including omicron variant. These quanta values for the original strain of 0.13 and 3.8 quanta/h for breathing and speaking and the virus variant multipliers may be used for simple hand calculations of probability of infection or with developed model operating with six size ranges of aerosol droplets to calculate the effect of ventilation and other removal mechanisms. The model developed is made available as an open-source tool.

12.
Int J Hyg Environ Health ; 246: 114045, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36209663

RESUMO

BACKGROUND: In previous studies, negative associations were found between increased environmental sensitivity and general well-being as well as positive perception of air quality. However, only a few studies with partly inconsistent results examined this relation under exposure. They tried to determine whether people with increased environmental sensitivity react to real environmental conditions with changes in current well-being and perception of air quality. METHODS: Pooled data from two single-blinded randomized controlled trials with different exposure levels were analyzed. Participants were exposed to different levels of volatile organic compounds (VOC) and carbon dioxide (CO2) in the front part of a former in-service wide-body airplane inserted in a low-pressure chamber. Three exposure groups were created depending on the VOC/CO2 levels: low, medium and high. Subjects repeatedly answered questions about their current mental well-being and about perception of air quality and odor intensity. Based on self-reported data the participants were classified into groups with low and higher environmental sensitivity. Data were evaluated using a 2 (environmental sensitivity) x 3 (exposure) ANCOVA with repeated measures. RESULTS: 503 individuals (221 females) participated (mean age: 42.8 ± 14.5 years). Thereof, 166 individuals were assigned to the group with higher environmental sensitivity; they reported poorer psychological well-being regarding vitality (F (1,466) = 16.42, p < .001***, partial η2 = 0.034) and vigilance (F (1,467) = 7.82, p = .005**, partial η2 = 0.016) and rated the pleasantness of air quality (F (1,476) = 7.55, p = .006**, partial η2 = 0.016) and air movement (F (1,474) = 5.11, p = .024*, partial η2 = 0.011) worse than people in the low sensitivity group. Exposure levels showed no effects. No systematic differences between men and women were found. Increased environmental sensitivity shared common variance with negative affectivity, another person-related variable. Its explanatory power was higher for evaluations of the environment whereas no differences between the concepts in explaining current psychological well-being were found. CONCLUSIONS: Even a slightly elevated level of environmental sensitivity led to worse ratings of the environment with no clear relation to the real environment. Consequently, environmental sensitivity should be considered as a confounding factor in environmental exposure studies. The independency from real exposure levels is in line with the results from previous studies showing that the differences in environmental ratings are probably also driven by psychological factors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Dióxido de Carbono/análise , Percepção , Autorrelato , Compostos Orgânicos Voláteis/análise , Ensaios Clínicos Controlados Aleatórios como Assunto , Método Simples-Cego
14.
Science ; 377(6610): 1071-1077, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048928

RESUMO

Hydroxyl (OH) radicals are highly reactive species that can oxidize most pollutant gases. In this study, high concentrations of OH radicals were found when people were exposed to ozone in a climate-controlled chamber. OH concentrations calculated by two methods using measurements of total OH reactivity, speciated alkenes, and oxidation products were consistent with those obtained from a chemically explicit model. Key to establishing this human-induced oxidation field is 6-methyl-5-hepten-2-one (6-MHO), which forms when ozone reacts with the skin-oil squalene and subsequently generates OH efficiently through gas-phase reaction with ozone. A dynamic model was used to show the spatial extent of the human-generated OH oxidation field and its dependency on ozone influx through ventilation. This finding has implications for the oxidation, lifetime, and perception of chemicals indoors and, ultimately, human health.


Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Radical Hidroxila , Ozônio , Ar Condicionado , Poluentes Atmosféricos/efeitos adversos , Alcenos , Humanos , Radical Hidroxila/análise , Radical Hidroxila/metabolismo , Oxirredução , Ozônio/efeitos adversos , Ventilação
15.
Appl Math Model ; 112: 800-821, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36060304

RESUMO

A widely used analytical model to quantitatively assess airborne infection risk is the Wells-Riley model which is limited to complete air mixing in a single zone. However, this assumption tends not to be feasible (or reality) for many situations. This study aimed to extend the Wells-Riley model so that the infection risk can be calculated in spaces where complete mixing is not present. Some more advanced ventilation concepts create either two horizontally divided air zones in spaces as displacement ventilation or the space may be divided into two vertical zones by downward plane jet as in protective-zone ventilation systems. This is done by evaluating the time-dependent distribution of infectious quanta in each zone and by solving the coupled system of differential equations based on the zonal quanta concentrations. This model introduces a novel approach by estimating the interzonal mixing factor based on previous experimental data for three types of ventilation systems: incomplete mixing ventilation, displacement ventilation, and protective zone ventilation. The modeling approach is applied to a room with one infected and one susceptible person present. The results show that using the Wells-Riley model based on the assumption of completely air mixing may considerably overestimate or underestimate the long-range airborne infection risk in rooms where air distribution is different than complete mixing, such as displacement ventilation, protected zone ventilation, warm air supplied from the ceiling, etc. Therefore, in spaces with non-uniform air distribution, a zonal modeling approach should be preferred in analytical models compared to the conventional single-zone Wells-Riley models when assessing long-range airborne transmission risk of infectious respiratory diseases.

16.
Indoor Air ; 32(8): e13079, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040273

RESUMO

Accurate prediction of inhaled CO2 concentration and alveolar gas exchange efficiency would improve the prediction of CO2 concentrations around the human body, which is essential for advanced ventilation design in buildings. We therefore, developed a computer-simulated person (CSP) that included a computational fluid dynamics approach. The CSP simulates metabolic heat production at the skin surface and carbon dioxide (CO2 ) gas exchange at the alveoli during the transient breathing cycle. This makes it possible to predict the CO2 distribution around the human body. The numerical model of the CO2 gas exchange mechanism includes both the upper and lower airways and makes it possible to calculate the alveolar CO2 partial pressure; this improves the prediction accuracy. We used the CSP to predict emission rates of metabolically generated CO2 exhaled by a person and assumed that the tidal volume will be unconsciously reduced as a result of exposure to poor indoor air quality. A reduction in tidal volume resulted in a decrease in CO2 emission rates of the same magnitude as was observed in our published experimental data. We also observed that the predicted inhaled CO2 concentration depended on the flow pattern around the human body, as would be expected.


Assuntos
Poluição do Ar em Ambientes Fechados , Dióxido de Carbono , Dióxido de Carbono/análise , Computadores , Humanos , Pulmão , Volume de Ventilação Pulmonar
17.
Indoor Air ; 32(8): e13092, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040284

RESUMO

We explored the importance of inhaled air temperature on thermal comfort, perceived air quality, acute non-clinical health symptoms, and physiological responses. Sixteen subjects stayed in a stainless-steel chamber for 90 min. They experienced four conditions with two inhaled air temperatures of 22 and 30°C and two ambient temperatures of 22 and 30°C in a 2 × 2 design. They wore breathing masks covering their mouth and nose to control the inhaled air temperature; the air was provided from an adjacent twin stainless-steel chamber. The subjects evaluated thermal conditions and health symptoms on visual-analogue scales. Skin temperature and electrocardiography were recorded. Whole-body thermal sensation and skin temperature did not change when the temperature of inhaled air was changed. Perceived air quality was significantly improved when subjects sat in the chamber at 30°C and inhaled air with a temperature of 22°C; under these conditions lip and throat dryness were significantly reduced. The lower inhaled air temperature increased time-domain heart rate variability indicators and decreased heart rate and the LF/HF ratio, suggesting that the parasympathetic nervous system was activated and the sympathetic nervous system was suppressed.


Assuntos
Poluição do Ar em Ambientes Fechados , Humanos , Temperatura Cutânea , Aço , Temperatura , Sensação Térmica/fisiologia
18.
Indoor Air ; 32(8): e13070, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040283

RESUMO

The question of whether SARS-CoV-2 is mainly transmitted by droplets or aerosols has been highly controversial. We sought to explain this controversy through a historical analysis of transmission research in other diseases. For most of human history, the dominant paradigm was that many diseases were carried by the air, often over long distances and in a phantasmagorical way. This miasmatic paradigm was challenged in the mid to late 19th century with the rise of germ theory, and as diseases such as cholera, puerperal fever, and malaria were found to actually transmit in other ways. Motivated by his views on the importance of contact/droplet infection, and the resistance he encountered from the remaining influence of miasma theory, prominent public health official Charles Chapin in 1910 helped initiate a successful paradigm shift, deeming airborne transmission most unlikely. This new paradigm became dominant. However, the lack of understanding of aerosols led to systematic errors in the interpretation of research evidence on transmission pathways. For the next five decades, airborne transmission was considered of negligible or minor importance for all major respiratory diseases, until a demonstration of airborne transmission of tuberculosis (which had been mistakenly thought to be transmitted by droplets) in 1962. The contact/droplet paradigm remained dominant, and only a few diseases were widely accepted as airborne before COVID-19: those that were clearly transmitted to people not in the same room. The acceleration of interdisciplinary research inspired by the COVID-19 pandemic has shown that airborne transmission is a major mode of transmission for this disease, and is likely to be significant for many respiratory infectious diseases.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , Pandemias , Aerossóis e Gotículas Respiratórios , SARS-CoV-2
19.
Sci Rep ; 12(1): 11481, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798789

RESUMO

With a modified version of the Wells-Riley model, we simulated the size distribution and dynamics of five airborne viruses (measles, influenza, SARS-CoV-2, human rhinovirus, and adenovirus) emitted from a speaking person in a typical residential setting over a relative humidity (RH) range of 20-80% and air temperature of 20-25 °C. Besides the size transformation of virus-containing droplets due to evaporation, respiratory absorption, and then removal by gravitational settling, the modified model also considered the removal mechanism by ventilation. The trend and magnitude of RH impact depended on the respiratory virus. For rhinovirus and adenovirus humidifying the indoor air from 20/30 to 50% will be increasing the relative infection risk, however, this relative infection risk increase will be negligible for rhinovirus and weak for adenovirus. Humidification will have a potential benefit in decreasing the infection risk only for influenza when there is a large infection risk decrease for humidifying from 20 to 50%. Regardless of the dry solution composition, humidification will overall increase the infection risk via long-range airborne transmission of SARS-CoV-2. Compared to humidification at a constant ventilation rate, increasing the ventilation rate to moderate levels 0.5 → 2.0 h-1 will have a more beneficial infection risk decrease for all viruses except for influenza. Increasing the ventilation rate from low values of 0.5 h-1 to higher levels of 6 h-1 will have a dominating effect on reducing the infection risk regardless of virus type.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Infecções , Influenza Humana , Poluição do Ar em Ambientes Fechados/efeitos adversos , Humanos , Umidade , SARS-CoV-2
20.
Environ Sci Technol ; 56(8): 4838-4848, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35389619

RESUMO

Human-emitted volatile organic compounds (VOCs) are mainly from breath and the skin. In this study, we continuously measured VOCs in a stainless-steel environmentally controlled climate chamber (22.5 m3, air change rate at 3.2 h-1) occupied by four seated human volunteers using proton transfer reaction time-of-flight mass spectrometry and gas chromatography mass spectrometry. Experiments with human whole body, breath-only, and dermal-only emissions were performed under ozone-free and ozone-present conditions. In addition, the effect of temperature, relative humidity, clothing type, and age was investigated for whole-body emissions. Without ozone, the whole-body total emission rate (ER) was 2180 ± 620 µg h-1 per person (p-1), dominated by exhaled chemicals. The ERs of oxygenated VOCs were positively correlated with the enthalpy of the air. Under ozone-present conditions (∼37 ppb), the whole-body total ER doubled, with the increase mainly driven by VOCs resulting from skin surface lipids/ozone reactions, which increased with relative humidity. Long clothing (more covered skin) was found to reduce the total ERs but enhanced certain chemicals related to the clothing. The ERs of VOCs derived from this study provide a valuable data set of human emissions under various conditions and can be used in models to better predict indoor air quality, especially for highly occupied environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Ozônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...