Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 227: 111668, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923388

RESUMO

A rate enhancement of one to two orders of magnitude can be obtained in the aldehyde deformylation reactions by replacing the -N(CH3) groups of [NiIII(O2)(Me4[12]aneN4)]+ (Me4[12]aneN4 = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) and [NiIII(O2)(Me4[13]aneN4)]+ (Me4[13]aneN4 = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclotridecane) complexes by -NH in [NiIII(O2)([12]aneN4)]+ (2; [12]aneN4 = 1,4,7,10-tetraazacyclododecane) and [NiIII(O2)([13]aneN4)]+ (4; [13]aneN4 = 1,4,7,10-tetraazacyclotridecane). Based on detailed spectroscopic, reaction-kinetics and theoretical investigations, the higher reactivities of 2 and 4 are attributed to the changes in the secondary-sphere interactions between the [NiIII(O2)]+ and [12]aneN4 or [13]aneN4 moieties, which open up an alternative electrophilic pathway for the aldehyde oxidation reaction. Identification of primary kinetic isotope effects on the reactivity and stability of 2 when the -NH groups of the [12]aneN4 ligand are deuterated may also suggest the presence of secondary interaction between the -NH groups of [12]aneN4 and [NiIII(O2)]+ moieties, although, such interactions are not obvious in the DFT calculated optimized structure at the employed level of theory.


Assuntos
Aldeídos/química , Complexos de Coordenação/química , Níquel/química , Oxirredução
2.
Angew Chem Int Ed Engl ; 60(42): 23018-23024, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34309168

RESUMO

CuI /TEMPO (TEMPO=2,2,6,6-tetramethylpiperidinyloxyl) catalyst systems are versatile catalysts for aerobic alcohol oxidation reactions to selectively yield aldehydes. However, several aspects of the mechanism are yet unresolved, mainly because of the lack of identification of any reactive intermediates. Herein, we report the synthesis and characterization of a dinuclear [L12 Cu2 ]2+ complex 1, which in presence of TEMPO can couple the catalytic 4 H+ /4 e- reduction of O2 to water to the oxidation of benzylic and aliphatic alcohols. The mechanisms of the O2 -reduction and alcohol oxidation reactions have been clarified by the spectroscopic detection of the reactive intermediates in the gas and condensed phases, as well as by kinetic studies on each step in the catalytic cycles. Bis(µ-oxo)dicopper(III) (2) and bis(µ-hydroxo)dicopper(II) species 3 are shown as viable reactants in oxidation catalysis. The present study provides deep mechanistic insight into the aerobic oxidation of alcohols that should serve as a valuable foundation for ongoing efforts dedicated towards the understanding of transition-metal catalysts involving redox-active organic cocatalysts.

3.
Chem Commun (Camb) ; 57(23): 2947-2950, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33621306

RESUMO

A mononuclear oxoiron(iv) complex 1-trans bearing two equatorial sulfur ligations is synthesized and characterized as an active-site model of the elusive sulfur-ligated FeIV[double bond, length as m-dash]O intermediates in non-heme iron oxygenases. The introduction of sulfur ligands weakens the Fe[double bond, length as m-dash]O bond and enhances the oxidative reactivity of the FeIV[double bond, length as m-dash]O unit with a diminished deuterium kinetic isotope effect, thereby providing a compelling rationale for nature's use of the cis-thiolate ligated oxoiron(iv) motif in key metabolic transformations.

4.
Angew Chem Int Ed Engl ; 60(12): 6752-6756, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33348460

RESUMO

S=2 oxoiron(IV) species act as reactive intermediates in the catalytic cycle of nonheme iron oxygenases. The few available synthetic S=2 FeIV =O complexes known to date are often limited to trigonal bipyramidal and very rarely to octahedral geometries. Herein we describe the generation and characterization of an S=2 pseudotetrahedral FeIV =O complex 2 supported by the sterically demanding 1,4,7-tri-tert-butyl-1,4,7-triazacyclononane ligand. Complex 2 is a very potent oxidant in hydrogen atom abstraction (HAA) reactions with large non-classical deuterium kinetic isotope effects, suggesting hydrogen tunneling contributions. For sterically encumbered substrates, direct HAA is impeded and an alternative oxidative asynchronous proton-coupled electron transfer mechanism prevails, which is unique within the nonheme oxoiron community. The high reactivity and the similar spectroscopic parameters make 2 one of the best electronic and functional models for a biological oxoiron(IV) intermediate of taurine dioxygenase (TauD-J).

5.
J Am Chem Soc ; 142(13): 5924-5928, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32168447

RESUMO

In soluble methane monooxygenase enzymes (sMMO), dioxygen (O2) is activated at a diiron(II) center to form an oxodiiron(IV) intermediate Q that performs the challenging oxidation of methane to methanol. An analogous mechanism of O2 activation at mono- or dinuclear iron centers is rare in the synthetic chemistry. Herein, we report a mononuclear non-heme iron(II)-cyclam complex, 1-trans, that activates O2 to form the corresponding iron(IV)-oxo complex, 2-trans, via a mechanism reminiscent of the O2 activation process in sMMO. The conversion of 1-trans to 2-trans proceeds via the intermediate formation of an iron(III)-superoxide species 3, which could be trapped and spectroscopically characterized at -50 °C. Surprisingly, 3 is a stronger oxygen atom transfer (OAT) agent than 2-trans; 3 performs OAT to 1-trans or PPh3 to yield 2-trans quantitatively. Furthermore, 2-trans oxidizes the aromatic C-H bonds of 2,6-di-tert-butylphenol, which, together with the strong OAT ability of 3, represents new domains of oxoiron(IV) and superoxoiron(III) reactivities.


Assuntos
Compostos Heterocíclicos/metabolismo , Compostos de Ferro/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Compostos Heterocíclicos/química , Compostos de Ferro/química , Modelos Moleculares , Oxirredução , Oxigênio/química , Superóxidos/química , Superóxidos/metabolismo
6.
Angew Chem Int Ed Engl ; 58(12): 4012-4016, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30663826

RESUMO

The generation of a nonheme oxoiron(IV) intermediate, [(cyclam)FeIV (O)(CH3 CN)]2+ (2; cyclam=1,4,8,11-tetraazacyclotetradecane), is reported in the reactions of [(cyclam)FeII ]2+ with aqueous hydrogen peroxide (H2 O2 ) or a soluble iodosylbenzene (sPhIO) as a rare example of an oxoiron(IV) species that shows a preference for epoxidation over allylic oxidation in the oxidation of cyclohexene. Complex 2 is kinetically and catalytically competent to perform the epoxidation of olefins with high stereo- and regioselectivity. More importantly, 2 is likely to be the reactive intermediate involved in the catalytic epoxidation of olefins by [(cyclam)FeII ]2+ and H2 O2 . In spite of the predominance of the oxoiron(IV) cores in biology, the present study is a rare example of high-yield isolation and spectroscopic characterization of a catalytically relevant oxoiron(IV) intermediate in chemical oxidation reactions.


Assuntos
Alcenos/química , Complexos de Coordenação/química , Peróxido de Hidrogênio/química , Ferro/química , Catálise , Ligação de Hidrogênio , Oxirredução , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...