Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Ann Rheum Dis ; 82(12): 1547-1557, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37679035

RESUMO

OBJECTIVES: Progressive pseudorheumatoid arthropathy of childhood (PPAC), caused by deficiency of WNT1 inducible signalling pathway protein 3 (WISP3), has been challenging to study because no animal model of the disease exists and cartilage recovered from affected patients is indistinguishable from common end-stage osteoarthritis. Therefore, to gain insights into why precocious articular cartilage failure occurs in this disease, we made in vitro derived articular cartilage using isogenic WISP3-deficient and WISP3-sufficient human pluripotent stem cells (hPSCs). METHODS: We generated articular cartilage-like tissues from induced-(i) PSCs from two patients with PPAC and one wild-type human embryonic stem cell line in which we knocked out WISP3. We compared these tissues to in vitro-derived articular cartilage tissues from two isogenic WISP3-sufficient control lines using histology, bulk RNA sequencing, single cell RNA sequencing and in situ hybridisation. RESULTS: WISP3-deficient and WISP3-sufficient hPSCs both differentiated into articular cartilage-like tissues that appeared histologically similar. However, the transcriptomes of WISP3-deficient tissues differed significantly from WISP3-sufficient tissues and pointed to increased TGFß, TNFα/NFκB, and IL-2/STAT5 signalling and decreased oxidative phosphorylation. Single cell sequencing and in situ hybridisation revealed that WISP3-deficient cartilage contained a significantly higher fraction (~4 fold increase, p<0.001) of superficial zone chondrocytes compared with deeper zone chondrocytes than did WISP3-sufficient cartilage. CONCLUSIONS: WISP3-deficient and WISP3-sufficient hPSCs can be differentiated into articular cartilage-like tissues, but these tissues differ in their transcriptomes and in the relative abundances of chondrocyte subtypes they contain. These findings provide important starting points for in vivo studies when an animal model of PPAC or presymptomatic patient-derived articular cartilage becomes available.


Assuntos
Cartilagem Articular , Células-Tronco Pluripotentes , Animais , Humanos , Cartilagem Articular/metabolismo , Mutação , Condrócitos/metabolismo , Diferenciação Celular/genética
2.
Sci Rep ; 13(1): 11074, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422456

RESUMO

Somatic activating MAP2K1 mutations in endothelial cells (ECs) cause extracranial arteriovenous malformation (AVM). We previously reported the generation of a mouse line allowing inducible expression of constitutively active MAP2K1 (p.K57N) from the Rosa locus (R26GT-Map2k1-GFP/+) and showed, using Tg-Cdh5CreER, that EC expression of mutant MAP2K1 is sufficient for the development of vascular malformations in the brain, ear, and intestines. To gain further insight into the mechanism by which mutant MAP2K1 drives AVM development, we induced MAP2K1 (p.K57N) expression in ECs of postnatal-day-1 pups (P1) and investigated the changes in gene expression in P9 brain ECs by RNA-seq. We found that over-expression of MAP2K1 altered the transcript abundance of > 1600 genes. Several genes had > 20-fold changes between MAP2K1 expressing and wild-type ECs; the highest were Col15a1 (39-fold) and Itgb3 (24-fold). Increased expression of COL15A1 in R26GT-Map2k1-GFP/+; Tg-Cdh5CreER+/- brain ECs was validated by immunostaining. Ontology showed that differentially expressed genes were involved in processes important for vasculogenesis (e.g., cell migration, adhesion, extracellular matrix organization, tube formation, angiogenesis). Understanding how these genes and pathways contribute to AVM formation will help identify targets for therapeutic intervention.


Assuntos
Malformações Arteriovenosas , Malformações Vasculares , Animais , Camundongos , Malformações Arteriovenosas/genética , Células Endoteliais/metabolismo , Mutação , Malformações Vasculares/metabolismo , MAP Quinase Quinase 1/genética
3.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066225

RESUMO

Objectives: Progressive Pseudorheumatoid Arthropathy of Childhood (PPAC), caused by deficiency of WNT1 inducible signaling pathway protein 3 ( WISP3 ), has been challenging to study because no animal model of the disease exists and cartilage recovered from affected patients is indistinguishable from common end-stage osteoarthritis. Therefore, to gain insights into why precocious articular cartilage failure occurs in this disease, we made in vitro derived articular cartilage using isogenic WISP3 -deficient and WISP3 -sufficient human pluripotent stem cells (hPSCs). Methods: We generated articular cartilage-like tissues from induced-(i)PSCs from 2 patients with PPAC and 1 wild-type human embryonic stem cell line in which we knocked out WISP3. We compared these tissues to in vitro -derived articular cartilage tissues from 2 isogenic WISP3 -sufficient control lines using histology, bulk RNA sequencing, single cell RNA sequencing, and in situ hybridization. Results: WISP3 -deficient and WISP3 -sufficient hPSCs both differentiated into articular cartilage-like tissues that appeared histologically similar. However, the transcriptomes of WISP3 -deficient tissues differed significantly from WISP3 -sufficient tissues and pointed to increased TGFß, TNFα/NFkB, and IL-2/STAT5 signaling and decreased oxidative phosphorylation. Single cell sequencing and in situ hybridization revealed that WISP3 -deficient cartilage contained a significantly higher fraction (∼ 4-fold increase, p < 0.001) of superficial zone chondrocytes compared to deeper zone chondrocytes than did WISP3 -sufficient cartilage. Conclusions WISP3 -deficient and WISP3 -sufficient hPSCs can be differentiated into articular cartilage-like tissues, but these tissues differ in their transcriptomes and in the relative abundances of chondrocyte sub-types they contain. These findings provide important starting points for in vivo studies when an animal model of PPAC or presymptomtic patient-derived articular cartilage becomes available. KEY MESSAGES: What is already known on this topic: Loss-of-function mutations in WISP3 cause Progressive Pseudorheumatoid Arthropathy of Childhood (PPAC), yet the precise function of WISP3 in cartilage is unknown due to the absence of cartilage disease Wisp3 knockout mice and the lack of available PPAC patient cartilage that is not end-stage. Thus, most functional studies of WISP3 have been performed in vitro using WISP3 over-expressing cell lines (i.e., not wild-type) and WISP3 -deficient chondrocytes. What this study adds: We describe 3 new WISP3 -deficient human pluripotent stem cell (hPSC) lines and show they can be differentiated into articular cartilage-like tissue. We compare in vitro -derived articular cartilage made from WISP3 -deficient and isogenic WISP3 - sufficient hPSCs using bulk RNA sequencing, single cell RNA sequencing, and in situ hybridization. We observe significant differences in the expression of genes previously associated with cartilage formation and homeostasis in the TGFß, TNFα/NFkB, and IL-2/STAT5 signaling pathways. We also observe that WISP3-deficient cartilage-like tissues contain significantly higher fractions of chondrocytes that express superficial zone transcripts. These data suggest precocious cartilage failure in PPAC is the result of abnormal articular cartilage formation, dysregulated homeostatic signaling, or both.How this study might affect research, practice or policy: This study uses in vitro -derived articular cartilage to generate hypotheses for why cartilage fails in children with PPAC. This work prioritizes downstream studies to be performed when pre-symptomatic patient-derived cartilage samples or animal model of PPAC becomes available. It is essential to know how WISP3 functions in cartilage to develop therapies that benefit patients with PPAC and other degenerative joint diseases.

4.
Am J Med Genet A ; 191(5): 1164-1209, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36779427

RESUMO

The "Nosology of genetic skeletal disorders" has undergone its 11th revision and now contains 771 entries associated with 552 genes reflecting advances in molecular delineation of new disorders thanks to advances in DNA sequencing technology. The most significant change as compared to previous versions is the adoption of the dyadic naming system, systematically associating a phenotypic entity with the gene it arises from. We consider this a significant step forward as dyadic naming is more informative and less prone to errors than the traditional use of list numberings and eponyms. Despite the adoption of dyadic naming, efforts have been made to maintain strong ties to the MIM catalog and its historical data. As with the previous versions, the list of disorders and genes in the Nosology may be useful in considering the differential diagnosis in the clinic, directing bioinformatic analysis of next-generation sequencing results, and providing a basis for novel advances in biology and medicine.

5.
Angiogenesis ; 26(1): 97-105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35972708

RESUMO

Extracranial arteriovenous malformation (AVM) is a congenital vascular anomaly causing disfigurement, bleeding, ulceration, and pain. Most lesions are associated with somatic MAP2K1 activating mutations in endothelial cells (ECs). The purpose of this study was to determine if EC expression of mutant activated MAP2K1 is sufficient to produce vascular malformations in mice. We generated mice with a ROSA26 allele containing a lox-stop-lox gene trap (GT), Map2k1 cDNA with an activating p.K57N missense mutation, an internal ribosomal entry site, and green fluorescent protein cDNA (R26GT-Map2k1-GFP). We expressed mutant MAP2K1 and GFP in ECs of fetal and newborn mice using Tg-Cdh5Cre or Tg-Cdh5CreER alleles. Tg-Cdh5Cre+/-;R26GT-Map2k1-GFP/+ animals that express mutant MAP2K1 in ECs in utero developed diffuse vascular abnormalities and died by embryonic (E) day 16.5. Tg-Cdh5CreER+/-;R26GT-Map2k1-GFP/+ animals in which mutant MAP2K1 expression was induced in ECs by tamoxifen at postnatal (P) day 1 developed vascular malformations in the brain, ear, and intestines by P23. The lesions consisted of abnormal networks of blood vessels containing recombined and non-recombined ECs. In conclusion, expression of MAP2K1 p.K57N is sufficient to cause vascular malformations in mice. This model can be used to study the malformation process and for pre-clinical pharmacologic studies.


Assuntos
Malformações Arteriovenosas , Malformações Vasculares , Animais , Camundongos , Células Endoteliais/metabolismo , DNA Complementar/metabolismo , Mutação/genética , Malformações Arteriovenosas/genética , Malformações Vasculares/patologia
6.
Bone ; 158: 116307, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34973493

RESUMO

Serotonin (5HT) is a chemical messenger with biologic activities affecting multiple organs. Within the skeletal system, studies in mice and humans suggest blood 5HT levels affect bone, with elevations impairing and reductions enhancing bone accrual. Other studies, however, have not supported this hypothesis. Recently, administering 5HT to a Piezo1 mutant mouse strain with hyposerotonemia, intestinal dysmotility, and a doubling of femoral trabecular bone mass at 2 months of age, was reported to return the animals' intestinal motility and bone mass to normal. However, whether the 5HT directly affected bone metabolism or indirectly affected metabolism by improving intestinal function was not determined. Therefore, we administered 5HT to mice with normal intestinal function. We randomized female C57BL6/J mice and male and female mice that have increased bone mass due to a missense mutation in the WNT co-receptor LRP5 (Lrp5A214V) to receive 5HT or vehicle via daily IP injection from 4 weeks to 8 weeks of age. We did not observe consistent significant changes for distal femur trabecular, midshaft femur cortical, or vertebral body trabecular bone mass between 5HT treated and vehicle treated mice of either genotype. These data are compatible with other studies that have not observed a correlation between blood 5HT level and bone mass.


Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Serotonina , Animais , Feminino , Masculino , Camundongos , Osso e Ossos/metabolismo , Densidade Óssea/genética , Canais Iônicos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Endogâmicos C57BL
7.
PLoS One ; 16(10): e0250715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34637435

RESUMO

Disuse-induced bone loss is seen following spinal cord injury, prolonged bed rest, and exposure to microgravity. We performed whole transcriptomic profiling of cortical bone using RNA sequencing (RNAseq) and RNA molecular barcoding (NanoString) on a hindlimb unloading (HLU) mouse model to identify genes whose mRNA transcript abundances change in response to disuse. Eleven-week old female C57BL/6 mice were exposed to ambulatory loading or HLU for 7 days (n = 8/group). Total RNA from marrow-flushed femoral cortical bone was analyzed on HiSeq and NanoString platforms. The expression of several previously reported genes associated with Wnt signaling and metabolism was altered by HLU. Furthermore, the increased abundance of transcripts, such as Pfkfb3 and Mss51, after HLU imply these genes also have roles in the cortical bone's response to altered mechanical loading. Our study demonstrates that an unbiased approach to assess the whole transcriptomic profile of cortical bone can reveal previously unidentified mechanosensitive genes and may eventually lead to novel targets to prevent disuse-induced osteoporosis.


Assuntos
Osso Cortical/fisiologia , Expressão Gênica/genética , RNA/genética , Animais , Densidade Óssea/genética , Feminino , Fêmur/fisiologia , Elevação dos Membros Posteriores/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/genética , Análise de Sequência de RNA/métodos , Ausência de Peso , Microtomografia por Raio-X/métodos
8.
Bone ; 142: 115674, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33031974

RESUMO

In humans, somatic activating mutations in PIK3CA are associated with skeletal overgrowth. In order to determine if activated PI3K signaling in bone cells causes overgrowth, we used Tg(BGLAP-Cre) and Tg(DMP1-Cre) mouse strains to somatically activate a disease-causing conditional Pik3ca allele (Pik3caH1047R) in osteoblasts and osteocytes. We observed Tg(BGLAP-Cre);Pik3caH1047R/+ offspring were born at the expected Mendelian frequency. However, these mice developed cutaneous lymphatic malformations and died before 7 weeks of age. In contrast, Tg(DMP1-Cre);Pik3caH1047R/+ offspring survived and had no cutaneous lymphatic malformations. Assuming that Cre-activity outside of the skeletal system accounted for the difference in phenotype between Tg(BGLAP-Cre);Pik3caH1047R/+ and Tg(DMP1-Cre);Pik3caH1047R/+ mice, we developed sensitive and specific droplet digital PCR (ddPCR) assays to search for and quantify rates of Tg(BGLAP-Cre)- and Tg(DMP1-Cre)-mediated recombination in non-skeletal tissues. We observed Tg(BGLAP-Cre)-mediated recombination in several tissues including skin, muscle, artery, and brain; two CNS locations, hippocampus and cerebellum, exhibited Cre-mediated recombination in >5% of cells. Tg(DMP1-Cre)-mediated recombination was also observed in muscle, artery, and brain. Although we cannot preclude that differences in phenotype between mice with Tg(BGLAP-Cre)- and Tg(DMP1-Cre)-mediated PIK3CA activation are due to Cre-recombination being induced at different stages of osteoblast differentiation, differences in recombination at non-skeletal sites are the more likely explanation. Since unanticipated sites of recombination can affect the interpretation of data from experiments involving conditional alleles, we recommend ddPCR as a good first step for assessing efficiency, leakiness, and off-targeting in experiments that employ Cre-mediated or Flp-mediated recombination.


Assuntos
Fosfatidilinositol 3-Quinases , Recombinação Genética , Animais , Proteínas da Matriz Extracelular/genética , Integrases , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/genética , Reação em Cadeia da Polimerase , Recombinação Genética/genética
9.
Bone ; 143: 115708, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33164872

RESUMO

The cysteine knot protein sclerostin is an osteocyte-derived secreted inhibitor of the Wnt co-receptors LRP5 and LRP6. LRP5 plays a dominant role in bone homeostasis, but we previously reported that Sost/sclerostin suppression significantly increased osteogenesis regardless of Lrp5 presence or absence. Those observations suggested that the bone forming effects of sclerostin inhibition can occur through Lrp6 (when Lrp5 is suppressed), or through other yet undiscovered mechanisms independent of Lrp5/6. To distinguish between these two possibilities, we generated mice with compound deletion of Lrp5 and Lrp6 selectively in bone, and treated them with sclerostin monoclonal antibody (Scl-mAb). All mice were homozygous flox for both Lrp5 and Lrp6 (Lrp5f/f; Lrp6f/f), and varied only in whether or not they carried the Dmp1-Cre transgene. Positive (Cre+) and negative (Cre-) mice were injected with Scl-mAb or vehicle from 4.5 to 14 weeks of age. Vehicle-treated Cre+ mice exhibited significantly reduced skeletal properties compared to vehicle-treated Cre- mice, as assessed by DXA, µCT, pQCT, and histology, indicating that Lrp5/6 deletions were effective and efficient. Scl-mAb treatment improved nearly every bone-related parameter among Cre- mice, but the same treatment in Cre+ mice resulted in little to no improvement in skeletal properties. For the few endpoints where Cre+ mice responded to Scl-mAb, it is likely that antibody-induced promotion of Wnt signaling occurred in cell types earlier in the mesenchymal/osteoblast differentiation pathway than the Dmp1-expressing stage. This latter conclusion was supported by changes in some histomorphometric parameters. In conclusion, unlike with the deletion of Lrp5 alone, the bone-selective late-stage co-deletion of Lrp5 and Lrp6 significantly impairs or completely nullifies the osteogenic action of Scl-mAb, and highlights a major role for both Lrp5 and Lrp6 in the mechanism of action for the bone-building effects of sclerostin antibody.


Assuntos
Glicoproteínas , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Adaptadoras de Transdução de Sinal , Animais , Osso e Ossos/metabolismo , Glicoproteínas/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Osteoblastos/metabolismo
11.
J Bone Miner Res ; 35(10): 1981-1991, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32427356

RESUMO

Single-cell RNA sequencing (scRNA-Seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-Seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-Seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-Seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-Seq on freshly recovered long bone endocortical cells from mice that received either vehicle or sclerostin-neutralizing antibody for 1 week. We were unable to detect significant changes in bone anabolism-associated transcripts in immature and mature osteoblasts recovered from mice treated with sclerostin-neutralizing antibody; this might be a consequence of being underpowered to detect modest changes in gene expression, because only 7% of the sequenced endocortical cells were osteoblasts and a limited portion of their transcriptomes were sampled. We conclude that scRNA-Seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single-cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required. © 2020 American Society for Bone and Mineral Research.


Assuntos
Osteoblastos , Osteócitos , Análise de Sequência de RNA , Animais , Perfilação da Expressão Gênica , Camundongos , Análise de Célula Única , Transcriptoma
12.
Cornea ; 39(9): 1145-1150, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32452990

RESUMO

PURPOSE: In humans, loss-of-function mutations in the gene encoding Chordin-like 1 (CHRDL1) cause X-linked megalocornea (MGC1), characterized by bilateral corneal enlargement, decreased corneal thickness, and increased anterior chamber depth (ACD). We sought to determine whether Chrdl1 knockout (KO) mice would recapitulate the ocular findings found in patients with MGC1. METHODS: We generated mice with a Chrdl1 KO allele and confirmed that male Chrdl1 hemizygous KO mice do not express Chrdl1 mRNA. We examined the eyes of male mice that were hemizygous for either the wild-type (WT) or KO allele and measured corneal diameter, corneal area, corneal thickness, endothelial cell density, ACD, tear volume, and intraocular pressure. We also harvested retinas and counted retinal ganglion cell numbers. Eye segregation pattern in the dorsal lateral geniculate nucleus were also compared between male Chrdl1 KO and WT mice. RESULTS: Male Chrdl1 KO mice do not have larger cornea diameters than WT mice. KO mice have significantly thicker central corneas (116.5 ± 3.9 vs. 100.9 ± 4.2 µm, P = 0.013) and smaller ACD (325.7 ± 5.7 vs. 405.6 ± 6.3 µm, P < 0.001) than WT mice, which is the converse of what occurs in patients who lack CHRDL1. Retinal-thalamic projections and other ocular measurements did not significantly differ between KO and WT mice. CONCLUSIONS: Male Chrdl1 KO mice do not have the same anterior chamber abnormalities seen in humans with CHRDL1 mutations. Therefore, Chrdl1 KO mice do not recapitulate the human MGC1 phenotype. Nevertheless, Chrdl1 plays a role during mouse ocular development because corneas in KO mice differ from those in WT mice.


Assuntos
DNA/genética , Oftalmopatias Hereditárias/genética , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação , Proteínas do Tecido Nervoso/genética , Animais , Linhagem Celular , Análise Mutacional de DNA , Modelos Animais de Doenças , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Proteínas do Olho/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Fenótipo
13.
PLoS Genet ; 16(5): e1008361, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463812

RESUMO

Osteocalcin (OCN), the most abundant noncollagenous protein in the bone matrix, is reported to be a bone-derived endocrine hormone with wide-ranging effects on many aspects of physiology, including glucose metabolism and male fertility. Many of these observations were made using an OCN-deficient mouse allele (Osc-) in which the 2 OCN-encoding genes in mice, Bglap and Bglap2, were deleted in ES cells by homologous recombination. Here we describe mice with a new Bglap and Bglap2 double-knockout (dko) allele (Bglap/2p.Pro25fs17Ter) that was generated by CRISPR/Cas9-mediated gene editing. Mice homozygous for this new allele do not express full-length Bglap or Bglap2 mRNA and have no immunodetectable OCN in their serum. FTIR imaging of cortical bone in these homozygous knockout animals finds alterations in the collagen maturity and carbonate to phosphate ratio in the cortical bone, compared with wild-type littermates. However, µCT and 3-point bending tests do not find differences from wild-type littermates with respect to bone mass and strength. In contrast to the previously reported OCN-deficient mice with the Osc-allele, serum glucose levels and male fertility in the OCN-deficient mice with the Bglap/2pPro25fs17Ter allele did not have significant differences from wild-type littermates. We cannot explain the absence of endocrine effects in mice with this new knockout allele. Possible explanations include the effects of each mutated allele on the transcription of neighboring genes, or differences in genetic background and environment. So that our findings can be confirmed and extended by other interested investigators, we are donating this new Bglap and Bglap2 double-knockout strain to the Jackson Laboratories for academic distribution.


Assuntos
Sistema Endócrino/fisiologia , Osteocalcina/genética , Animais , Densidade Óssea/genética , Osso e Ossos/metabolismo , Sistema Endócrino/metabolismo , Feminino , Fertilidade/genética , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocalcina/deficiência
15.
PLoS One ; 15(2): e0229449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32107493

RESUMO

Anterior cruciate ligament (ACL) transection surgery in the minipig induces post-traumatic osteoarthritis (PTOA) in a pattern similar to that seen in human patients after ACL injury. Prior studies have reported the presence of cartilage matrix-degrading proteases, such as Matrix metalloproteinase-1 (MMP-1) and A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4), in the synovial fluid of injured or arthritic joints; however, the tissue origin of these proteases is unknown. The objective of this study was to identify transcriptional processes activated in the synovium after surgical induction of PTOA with ACL transection, and to determine if processes associated with proteolysis were enriched in the synovium after ACL transection. Unilateral ACL transection was performed in adolescent Yucatan minipigs and synovium samples were collected at 1, 5, 9, and 14 days post-injury. Transcriptome-wide gene expression levels were determined using bulk RNA-Sequencing in the surgical animals and control animals with healthy knees. The greatest number of transcripts with significant changes was observed 1 day after injury. These changes were primarily associated with cellular proliferation, consistent with measurements of increased cellularity of the synovium at the two-week time point. At five to 14 days, the expression of transcripts relating to proteolysis and cartilage development was significantly enriched. While protease inhibitor-encoding transcripts (TIMP2, TIMP3) represented the largest fraction of protease-associated transcripts in the uninjured synovium, protease-encoding transcripts (including MMP1, MMP2, ADAMTS4) predominated after surgery. Cartilage development-associated transcripts that are typically not expressed by synovial cells, such as ACAN and COMP, were enriched in the synovium following ACL-transection. The upregulation in both catabolic processes (proteolysis) and anabolic processes (cartilage development) suggests that the synovium plays a complex, balancing role in the early response to PTOA induction.


Assuntos
Cartilagem Articular/patologia , Condrogênese/genética , Osteoartrite/genética , Proteólise , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Transcriptoma , Animais , Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , Masculino , Osteoartrite/patologia , Osteoartrite/cirurgia , Suínos , Porco Miniatura
16.
Development ; 147(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31932352

RESUMO

Evolution is replete with reuse of genes in different contexts, leading to multifunctional roles of signaling factors during development. Here, we explore osteoclast regulation during skeletal development through analysis of colony-stimulating factor 1 receptor (csf1r) function in the zebrafish. A primary role of Csf1r signaling is to regulate the proliferation, differentiation and function of myelomonocytic cells, including osteoclasts. We demonstrate the retention of two functional paralogues of csf1r in zebrafish. Mutant analysis indicates that the paralogues have shared, non-redundant roles in regulating osteoclast activity during the formation of the adult skeleton. csf1ra, however, has adopted unique roles in pigment cell patterning not seen in the second paralogue. We identify a unique noncoding element within csf1ra of fishes that is sufficient for controlling gene expression in pigment cells during development. As a role for Csf1r signaling in pigmentation is not observed in mammals or birds, it is likely that the overlapping roles of the two paralogues released functional constraints on csf1ra, allowing the signaling capacity of Csf1r to serve a novel function in the evolution of pigment pattern in fishes.


Assuntos
Desenvolvimento Embrionário , Proteínas Tirosina Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Osso e Ossos/metabolismo , Dentição , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Mutação/genética , Fenótipo , Pigmentação/genética , Proteínas Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
17.
Bone ; 131: 115084, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31648079

RESUMO

Enhancing LRP5 signaling and inhibiting TGFß signaling have each been reported to increase bone mass and improve bone strength in wild-type mice. Monotherapy targeting LRP5 signaling, or TGFß signaling, also improved bone properties in mouse models of Osteogenesis Imperfecta (OI). We investigated whether additive or synergistic increases in bone properties would be attained if enhanced LRP5 signaling was combined with TGFß inhibition. We crossed an Lrp5 high bone mass (HBM) allele (Lrp5A214V) into the Col1a2G610C/+ mouse model of OI. At 6-weeks-of-age we began treating mice with an antibody that inhibits TGFß1, ß2, and ß3 (mAb 1D11), or with an isotype-matched control antibody (mAb 13C4). At 12-weeks-old, we observed that combining enhanced LRP5 signaling with inhibited TGFß signaling produced an additive effect on femoral and vertebral trabecular bone volumes, but not on cortical bone volumes. Although enhanced LRP5 signaling increased femur strength in a 3-point bending assay in Col1a2G610C/+ mice, femur strength did not improve further with TGFß inhibition. Neither enhanced LRP5 signaling nor TGFß inhibition, alone or in combination, improved femur 3-point-bending post-yield displacement in Col1a2G610C/+ mice. These pre-clinical studies indicate combination therapies that target LRP5 and TGFß signaling should increase trabecular bone mass in patients with OI more than targeting either signaling pathway alone. Whether additive increases in trabecular bone mass will occur in, and clinically benefit, patients with OI needs to be determined.


Assuntos
Osteogênese Imperfeita , Animais , Osso Esponjoso/diagnóstico por imagem , Colágeno Tipo I , Osso Cortical , Modelos Animais de Doenças , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética , Transdução de Sinais , Fator de Crescimento Transformador beta
18.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564437

RESUMO

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Assuntos
Chaperonas Moleculares/genética , Mutação , Osteogênese Imperfeita/genética , Animais , Feminino , Genes Recessivos , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Linhagem , Fenótipo , Via de Sinalização Wnt
19.
Am J Med Genet A ; 179(12): 2393-2419, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31633310

RESUMO

The application of massively parallel sequencing technology to the field of skeletal disorders has boosted the discovery of the underlying genetic defect for many of these diseases. It has also resulted in the delineation of new clinical entities and the identification of genes and pathways that had not previously been associated with skeletal disorders. These rapid advances have prompted the Nosology Committee of the International Skeletal Dysplasia Society to revise and update the last (2015) version of the Nosology and Classification of Genetic Skeletal Disorders. This newest and tenth version of the Nosology comprises 461 different diseases that are classified into 42 groups based on their clinical, radiographic, and/or molecular phenotypes. Remarkably, pathogenic variants affecting 437 different genes have been found in 425/461 (92%) of these disorders. By providing a reference list of recognized entities and their causal genes, the Nosology should help clinicians achieve accurate diagnoses for their patients and help scientists advance research in skeletal biology.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Doenças Musculoesqueléticas/diagnóstico , Doenças Musculoesqueléticas/genética , Alelos , Estudos de Associação Genética/métodos , Humanos , Padrões de Herança , Fenótipo , Guias de Prática Clínica como Assunto
20.
Hum Genet ; 138(11-12): 1419-1421, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31637524

RESUMO

The majority of extracranial arteriovenous malformations (AVMs) are caused by somatic mutations in MAP2K1. We report a somatic HRAS mutation in a patient who has a facial AVM associated with subcutaneous adipose overgrowth. We performed whole exome sequencing on DNA from the affected tissue and found a HRAS mutation (p.Thr58_Ala59delinsValLeuAspVal). Mutant allelic frequency was 5% in whole tissue and 31% in isolated endothelial cells (ECs); the mutation was not present in blood DNA or non-ECs. Somatic mutations in HRAS can cause AVM.


Assuntos
Malformações Arteriovenosas/genética , Malformações Arteriovenosas/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Criança , Feminino , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...