Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol NMR Assign ; 17(2): 183-188, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37421542

RESUMO

The N-acyl-L-homoserine lactone (AHL) quorum sensing regulates virulence in the opportunistic pathogen, Pseudomonas aeruginosa. The LasI and RhlI AHL synthases use acyl carrier protein substrates to synthesize, respectively, the 3-oxododecanoyl-L-homoserine lactone (3-oxoC12-HSL) and butyryl-L-homoserine lactone (C4-HSL) QS signals for this bacterium. Although P. aeruginosa genome contains three open reading frames to encode three acyl carrier proteins, namely the ACP1, ACP2 and ACP3, microarray and gene replacement studies show that only the ACP1 carrier protein is under quorum sensing regulation. In this study, we isotopically enriched one of the acyl carrier proteins, ACP1 from P. aeruginosa and describe the backbone resonance assignments for this protein to delineate the structural and molecular basis of ACP1 recognition in P. aeruginosa AHL quorum sensing signal synthesis.


Assuntos
Proteína de Transporte de Acila , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Proteína de Transporte de Acila/metabolismo , Ressonância Magnética Nuclear Biomolecular , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/metabolismo
2.
Biomol NMR Assign ; 17(2): 167-171, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37233945

RESUMO

Acyl carrier proteins (ACPs) are universally conserved proteins amongst different species and are involved in fatty acid synthesis. Bacteria utilize ACPs as acyl carriers and donors for the synthesis of products such as endotoxins or acyl homoserine lactones (AHLs), which are used in quorum sensing mechanisms. In this study, wehave expressed isotopically labeled holo-ACP from Burkholderia mallei in Escherichia coli to assign 100% of non-proline backbone amide (HN) resonances, 95.5% of aliphatic carbon resonances and 98.6% of aliphatic hydrogen sidechain resonances.


Assuntos
Proteína de Transporte de Acila , Burkholderia mallei , Proteína de Transporte de Acila/metabolismo , Burkholderia mallei/metabolismo , Ressonância Magnética Nuclear Biomolecular , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(7): 2506-11, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550275

RESUMO

Protein motions control enzyme catalysis through mechanisms that are incompletely understood. Here NMR (13)C relaxation dispersion experiments were used to monitor changes in side-chain motions that occur in response to activation by phosphorylation of the MAP kinase ERK2. NMR data for the methyl side chains on Ile, Leu, and Val residues showed changes in conformational exchange dynamics in the microsecond-to-millisecond time regime between the different activity states of ERK2. In inactive, unphosphorylated ERK2, localized conformational exchange was observed among methyl side chains, with little evidence for coupling between residues. Upon dual phosphorylation by MAP kinase kinase 1, the dynamics of assigned methyls in ERK2 were altered throughout the conserved kinase core, including many residues in the catalytic pocket. The majority of residues in active ERK2 fit to a single conformational exchange process, with kex ≈ 300 s(-1) (kAB ≈ 240 s(-1)/kBA ≈ 60 s(-1)) and pA/pB ≈ 20%/80%, suggesting global domain motions involving interconversion between two states. A mutant of ERK2, engineered to enhance conformational mobility at the hinge region linking the N- and C-terminal domains, also induced two-state conformational exchange throughout the kinase core, with exchange properties of kex ≈ 500 s(-1) (kAB ≈ 15 s(-1)/kBA ≈ 485 s(-1)) and pA/pB ≈ 97%/3%. Thus, phosphorylation and activation of ERK2 lead to a dramatic shift in conformational exchange dynamics, likely through release of constraints at the hinge.


Assuntos
Ativação Enzimática/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Animais , Escherichia coli , Espectroscopia de Ressonância Magnética , Fosforilação , Estrutura Terciária de Proteína , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...