Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Commun ; 15(1): 6716, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112473

RESUMO

Myosin motors perform many fundamental functions in eukaryotic cells by providing force generation, transport or tethering capacity. Motor activity control within the cell involves on/off switches, however, few examples are known of how myosins regulate speed or processivity and fine-tune their activity to a specific cellular task. Here, we describe a phosphorylation event for myosins of class VI (MYO6) in the motor domain, which accelerates its ATPase activity leading to a 4-fold increase in motor speed determined by actin-gliding assays, single molecule mechanics and stopped flow kinetics. We demonstrate that the serine/threonine kinase DYRK2 phosphorylates MYO6 at S267 in vitro. Single-molecule optical-tweezers studies at low load reveal that S267-phosphorylation results in faster nucleotide-exchange kinetics without change in the working stroke of the motor. The selective increase in stiffness of the acto-MYO6 complex when proceeding load-dependently into the nucleotide-free rigor state demonstrates that S267-phosphorylation turns MYO6 into a stronger motor. Finally, molecular dynamic simulations of the nucleotide-free motor reveal an alternative interaction network within insert-1 upon phosphorylation, suggesting a molecular mechanism, which regulates insert-1 positioning, turning the S267-phosphorylated MYO6 into a faster motor.


Assuntos
Simulação de Dinâmica Molecular , Cadeias Pesadas de Miosina , Fosforilação , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Cinética , Proteínas Serina-Treonina Quinases/metabolismo , Nucleotídeos/metabolismo , Humanos , Animais , Domínios Proteicos , Proteínas Tirosina Quinases/metabolismo , Actinas/metabolismo
2.
Nat Cell Biol ; 26(8): 1296-1308, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38951707

RESUMO

α-Synuclein (αSYN), a pivotal synaptic protein implicated in synucleinopathies such as Parkinson's disease and Lewy body dementia, undergoes protein phase separation. We reveal that vesicle-associated membrane protein 2 (VAMP2) orchestrates αSYN phase separation both in vitro and in cells. Electrostatic interactions, specifically mediated by VAMP2 via its juxtamembrane domain and the αSYN C-terminal region, drive phase separation. Condensate formation is specific for R-SNARE VAMP2 and dependent on αSYN lipid membrane binding. Our results delineate a regulatory mechanism for αSYN phase separation in cells. Furthermore, we show that αSYN condensates sequester vesicles and attract complexin-1 and -2, thus supporting a role in synaptic physiology and pathophysiology.


Assuntos
Proteína 2 Associada à Membrana da Vesícula , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Humanos , Ligação Proteica , Animais , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Células HEK293 , Eletricidade Estática , Separação de Fases
3.
Blood ; 144(9): 931-939, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38905596

RESUMO

ABSTRACT: Ribosomopathy Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive inherited bone marrow failure syndrome (IBMFS) caused by mutations in the Shwachman-Bodian-Diamond syndrome gene, which is associated with an increased risk of myeloid malignancy. Tracking how hematopoietic stem cell (HSC) clonal dynamics change over time, assessing whether somatic genetic rescue mechanisms affect these dynamics, and mapping out when leukemic driver mutations are acquired is important to understand which individuals with SDS may go on to develop leukemia. In this review, we discuss how new technologies that allow researchers to map mutations at the level of single HSC clones are generating important insights into genetic rescue mechanisms and their relative risk for driving evolution to leukemia, and how these data can inform the future development of personalized medicine approaches in SDS and other IBMFSs.


Assuntos
Medicina de Precisão , Síndrome de Shwachman-Diamond , Humanos , Síndrome de Shwachman-Diamond/genética , Medicina de Precisão/métodos , Mutação , Doenças da Medula Óssea/genética , Transtornos da Insuficiência da Medula Óssea/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia
4.
Nat Commun ; 14(1): 5092, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608017

RESUMO

Clonal tracking of cells using somatic mutations permits exploration of clonal dynamics in human disease. Here, we perform whole genome sequencing of 323 haematopoietic colonies from 10 individuals with the inherited ribosomopathy Shwachman-Diamond syndrome to reconstruct haematopoietic phylogenies. In ~30% of colonies, we identify mutually exclusive mutations in TP53, EIF6, RPL5, RPL22, PRPF8, plus chromosome 7 and 15 aberrations that increase SBDS and EFL1 gene dosage, respectively. Target gene mutations commence in utero, resulting in a profusion of clonal expansions, with only a few haematopoietic stem cell lineages (mean 8, range 1-24) contributing ~50% of haematopoietic colonies across 8 individuals (range 4-100% clonality) by young adulthood. Rapid clonal expansion during disease transformation is associated with biallelic TP53 mutations and increased mutation burden. Our study highlights how convergent somatic mutation of the p53-dependent nucleolar surveillance pathway offsets the deleterious effects of germline ribosomopathy but increases opportunity for TP53-mutated cancer evolution.


Assuntos
Cromossomos Humanos Par 7 , Células Germinativas , Humanos , Adulto Jovem , Adulto , Dosagem de Genes , Células-Tronco Hematopoéticas , Mutação
5.
Hemasphere ; 7(4): e872, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37008163

RESUMO

Neutropenia, as an isolated blood cell deficiency, is a feature of a wide spectrum of acquired or congenital, benign or premalignant disorders with a predisposition to develop myelodysplastic neoplasms/acute myeloid leukemia that may arise at any age. In recent years, advances in diagnostic methodologies, particularly in the field of genomics, have revealed novel genes and mechanisms responsible for etiology and disease evolution and opened new perspectives for tailored treatment. Despite the research and diagnostic advances in the field, real world evidence, arising from international neutropenia patient registries and scientific networks, has shown that the diagnosis and management of neutropenic patients is mostly based on the physicians' experience and local practices. Therefore, experts participating in the European Network for the Innovative Diagnosis and Treatment of Chronic Neutropenias have collaborated under the auspices of the European Hematology Association to produce recommendations for the diagnosis and management of patients across the whole spectrum of chronic neutropenias. In the present article, we describe evidence- and consensus-based guidelines for the definition and classification, diagnosis, and follow-up of patients with chronic neutropenias including special entities such as pregnancy and the neonatal period. We particularly emphasize the importance of combining the clinical findings with classical and novel laboratory testing, and advanced germline and/or somatic mutational analyses, for the characterization, risk stratification, and monitoring of the entire spectrum of neutropenia patients. We believe that the wide clinical use of these practical recommendations will be particularly beneficial for patients, families, and treating physicians.

6.
bioRxiv ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909531

RESUMO

The ability of ribosomes to translate the genetic code into protein requires a finely tuned ion and solvent ecosystem. However, the lack of high-resolution structures has precluded accurate positioning of all the functional elements of the ribosome and limited our understanding of the specific role of ribosomal RNA chemical modifications in modulating ribosome function in health and disease. Here, using a new sample preparation methodology based on functionalised pristine graphene-coated grids, we solve the cryo-EM structure of the human large ribosomal subunit to a resolution of 1.67 Å. The accurate assignment of water molecules, magnesium and potassium ions in our model highlights the fundamental biological role of ribosomal RNA methylation in harnessing unconventional carbon-oxygen hydrogen bonds to establish chemical interactions with the environment and fine-tune the functional interplay with tRNA. In addition, the structures of three translational inhibitors bound to the human large ribosomal subunit at better than 2 Å resolution provide mechanistic insights into how three key druggable pockets of the ribosome are targeted and illustrate the potential of this methodology to accelerate high-throughput structure-based design of anti-cancer therapeutics.

7.
Nucleic Acids Res ; 51(8): 4043-4054, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36951107

RESUMO

The chemical modification of ribosomal RNA and proteins is critical for ribosome assembly, for protein synthesis and may drive ribosome specialisation in development and disease. However, the inability to accurately visualise these modifications has limited mechanistic understanding of the role of these modifications in ribosome function. Here we report the 2.15 Å resolution cryo-EM reconstruction of the human 40S ribosomal subunit. We directly visualise post-transcriptional modifications within the 18S rRNA and four post-translational modifications of ribosomal proteins. Additionally, we interpret the solvation shells in the core regions of the 40S ribosomal subunit and reveal how potassium and magnesium ions establish both universally conserved and eukaryote-specific coordination to promote the stabilisation and folding of key ribosomal elements. This work provides unprecedented structural details for the human 40S ribosomal subunit that will serve as an important reference for unravelling the functional role of ribosomal RNA modifications.


Assuntos
Proteínas Ribossômicas , Subunidades Ribossômicas Menores de Eucariotos , Humanos , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Microscopia Crioeletrônica , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , RNA Ribossômico/metabolismo , RNA Ribossômico 18S/metabolismo
8.
Elife ; 112022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36480270

RESUMO

Understanding the mechanism by which streptomycin binds to the small subunit of the mitoribosome may help researchers design less toxic derivatives of this antibiotic.

9.
Nat Commun ; 13(1): 6783, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351913

RESUMO

PELP1 (Proline-, Glutamic acid-, Leucine-rich protein 1) is a large scaffolding protein that functions in many cellular pathways including steroid receptor (SR) coactivation, heterochromatin maintenance, and ribosome biogenesis. PELP1 is a proto-oncogene whose expression is upregulated in many human cancers, but how the PELP1 scaffold coordinates its diverse cellular functions is poorly understood. Here we show that PELP1 serves as the central scaffold for the human Rix1 complex whose members include WDR18, TEX10, and SENP3. We reconstitute the mammalian Rix1 complex and identified a stable sub-complex comprised of the conserved PELP1 Rix1 domain and WDR18. We determine a 2.7 Å cryo-EM structure of the subcomplex revealing an interconnected tetrameric assembly and the architecture of PELP1's signaling motifs, including eleven LxxLL motifs previously implicated in SR signaling and coactivation of Estrogen Receptor alpha (ERα) mediated transcription. However, the structure shows that none of these motifs is in a conformation that would support SR binding. Together this work establishes that PELP1 scaffolds the Rix1 complex, and association with WDR18 may direct PELP1's activity away from SR coactivation.


Assuntos
Neoplasias da Mama , Fatores de Transcrição , Animais , Humanos , Feminino , Proteínas Correpressoras/metabolismo , Fatores de Transcrição/metabolismo , Microscopia Crioeletrônica , Ligação Proteica , Transdução de Sinais , Mamíferos/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas Nucleares/metabolismo
10.
Nat Struct Mol Biol ; 29(9): 942-953, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097293

RESUMO

The AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis that initiates cytoplasmic maturation of the large ribosomal subunit. Drg1 releases the shuttling maturation factor Rlp24 from pre-60S particles shortly after nuclear export, a strict requirement for downstream maturation. The molecular mechanism of release remained elusive. Here, we report a series of cryo-EM structures that captured the extraction of Rlp24 from pre-60S particles by Saccharomyces cerevisiae Drg1. These structures reveal that Arx1 and the eukaryote-specific rRNA expansion segment ES27 form a joint docking platform that positions Drg1 for efficient extraction of Rlp24 from the pre-ribosome. The tips of the Drg1 N domains thereby guide the Rlp24 C terminus into the central pore of the Drg1 hexamer, enabling extraction by a hand-over-hand translocation mechanism. Our results uncover substrate recognition and processing by Drg1 step by step and provide a comprehensive mechanistic picture of the conserved modus operandi of AAA-ATPases.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Clin Transl Med ; 12(6): e933, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730653

RESUMO

BACKGROUND: Improving the poor prognosis of infant leukaemias remains an unmet clinical need. This disease is a prototypical fusion oncoprotein-driven paediatric cancer, with MLL (KMT2A)-fusions present in most cases. Direct targeting of these driving oncoproteins represents a unique therapeutic opportunity. This rationale led us to initiate a drug screening with the aim of discovering drugs that can block MLL-fusion oncoproteins. METHODS: A screen for inhibition of MLL-fusion proteins was developed that overcomes the traditional limitations of targeting transcription factors. This luciferase reporter-based screen, together with a secondary western blot screen, was used to prioritize compounds. We characterized the lead compound, disulfiram (DSF), based on its efficient ablation of MLL-fusion proteins. The consequences of drug-induced MLL-fusion inhibition were confirmed by cell proliferation, colony formation, apoptosis assays, RT-qPCR, in vivo assays, RNA-seq and ChIP-qPCR and ChIP-seq analysis. All statistical tests were two-sided. RESULTS: Drug-induced inhibition of MLL-fusion proteins by DSF resulted in a specific block of colony formation in MLL-rearranged cells in vitro, induced differentiation and impeded leukaemia progression in vivo. Mechanistically, DSF abrogates MLL-fusion protein binding to DNA, resulting in epigenetic changes and down-regulation of leukaemic programmes setup by the MLL-fusion protein. CONCLUSION: DSF can directly inhibit MLL-fusion proteins and demonstrate antitumour activity both in vitro and in vivo, providing, to our knowledge, the first evidence for a therapy that directly targets the initiating oncogenic MLL-fusion protein.


Assuntos
Leucemia , Proteínas de Fusão Oncogênica , Doença Aguda , Apoptose , Proliferação de Células , Criança , Epigênese Genética , Humanos , Lactente , Leucemia/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
14.
Nat Commun ; 13(1): 1562, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322020

RESUMO

Protein synthesis is a cyclical process consisting of translation initiation, elongation, termination and ribosome recycling. The release factors SBDS and EFL1-both mutated in the leukemia predisposition disorder Shwachman-Diamond syndrome - license entry of nascent 60S ribosomal subunits into active translation by evicting the anti-association factor eIF6 from the 60S intersubunit face. We find that in mammalian cells, eIF6 holds all free cytoplasmic 60S subunits in a translationally inactive state and that SBDS and EFL1 are the minimal components required to recycle these 60S subunits back into additional rounds of translation by evicting eIF6. Increasing the dose of eIF6 in mice in vivo impairs terminal erythropoiesis by sequestering post-termination 60S subunits in the cytoplasm, disrupting subunit joining and attenuating global protein synthesis. These data reveal that ribosome maturation and recycling are dynamically coupled by a mechanism that is disrupted in an inherited leukemia predisposition disorder.


Assuntos
Leucemia , Proteínas , Animais , Leucemia/metabolismo , Mamíferos/metabolismo , Camundongos , Proteínas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Síndrome de Shwachman-Diamond
15.
Nat Commun ; 13(1): 929, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177605

RESUMO

Many cellular processes, including ribosome biogenesis, are regulated through post-transcriptional RNA modifications. Here, a genome-wide analysis of the human mitochondrial transcriptome shows that 2'-O-methylation is limited to residues of the mitoribosomal large subunit (mtLSU) 16S mt-rRNA, introduced by MRM1, MRM2 and MRM3, with the modifications installed by the latter two proteins being interdependent. MRM2 controls mitochondrial respiration by regulating mitoribosome biogenesis. In its absence, mtLSU particles (visualized by cryo-EM at the resolution of 2.6 Å) present disordered RNA domains, partial occupancy of bL36m and bound MALSU1:L0R8F8:mtACP anti-association module, allowing five mtLSU biogenesis intermediates with different intersubunit interface configurations to be placed along the assembly pathway. However, mitoribosome biogenesis does not depend on the methyltransferase activity of MRM2. Disruption of the MRM2 Drosophila melanogaster orthologue leads to mitochondria-related developmental arrest. This work identifies a key checkpoint during mtLSU assembly, essential to maintain mitochondrial homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Metiltransferases/metabolismo , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , Subunidades Ribossômicas Maiores/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Metilação , Metiltransferases/genética , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/metabolismo
18.
Nat Commun ; 12(1): 5044, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413298

RESUMO

Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.


Assuntos
Mutação , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/genética , Ribossomos/patologia , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patologia , Adolescente , Adulto , Animais , Fenômenos Biológicos , Células Cultivadas , Criança , Pré-Escolar , Dictyostelium , Drosophila , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Células Germinativas , Humanos , Lactente , Simulação de Dinâmica Molecular , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteínas/genética , Proteínas/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Síndrome de Shwachman-Diamond/metabolismo , Adulto Jovem
19.
Cell Stem Cell ; 28(7): 1275-1290.e9, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711283

RESUMO

Impaired ribosome function is the underlying etiology in a group of bone marrow failure syndromes called ribosomopathies. However, how ribosomes are regulated remains poorly understood, as are approaches to restore hematopoietic stem cell (HSC) function loss because of defective ribosome biogenesis. Here we reveal a role of the E3 ubiquitin ligase HectD1 in regulating HSC function via ribosome assembly and protein translation. Hectd1-deficient HSCs exhibit a striking defect in transplantation ability and ex vivo maintenance concomitant with reduced protein synthesis and growth rate under stress conditions. Mechanistically, HectD1 ubiquitinates and degrades ZNF622, an assembly factor for the ribosomal 60S subunit. Hectd1 loss leads to accumulation of ZNF622 and the anti-association factor eIF6 on 60S, resulting in 60S/40S joining defects. Importantly, Znf622 depletion in Hectd1-deficient HSCs restored ribosomal subunit joining, protein synthesis, and HSC reconstitution capacity. These findings highlight the importance of ubiquitin-coordinated ribosome assembly in HSC regeneration.


Assuntos
Biossíntese de Proteínas , Ribossomos , Células-Tronco Hematopoéticas , Ribossomos/metabolismo
20.
Blood ; 137(26): 3629-3640, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33619528

RESUMO

The expression of ZAP-70 in a subset of chronic lymphocytic leukemia (CLL) patients strongly correlates with a more aggressive clinical course, although the exact underlying mechanisms remain elusive. The ability of ZAP-70 to enhance B-cell receptor (BCR) signaling, independently of its kinase function, is considered to contribute. We used RNA-sequencing and proteomic analyses of primary cells differing only in their expression of ZAP-70 to further define how ZAP-70 increases the aggressiveness of CLL. We identified that ZAP-70 is directly required for cell survival in the absence of an overt BCR signal, which can compensate for ZAP-70 deficiency as an antiapoptotic signal. In addition, the expression of ZAP-70 regulates the transcription of factors regulating the recruitment and activation of T cells, such as CCL3, CCL4, and IL4I1. Quantitative mass spectrometry of double-cross-linked ZAP-70 complexes further demonstrated constitutive and direct protein-protein interactions between ZAP-70 and BCR-signaling components. Unexpectedly, ZAP-70 also binds to ribosomal proteins, which is not dependent on, but is further increased by, BCR stimulation. Importantly, decreased expression of ZAP-70 significantly reduced MYC expression and global protein synthesis, providing evidence that ZAP-70 contributes to translational dysregulation in CLL. In conclusion, ZAP-70 constitutively promotes cell survival, microenvironment interactions, and protein synthesis in CLL cells, likely to improve cellular fitness and to further drive disease progression.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas , Proteína-Tirosina Quinase ZAP-70/metabolismo , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Proteínas de Neoplasias/genética , Células Tumorais Cultivadas , Proteína-Tirosina Quinase ZAP-70/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA