Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 331, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208779

RESUMO

BACKGROUND: People with mitochondrial disease (MtD) are susceptible to metabolic decompensation and neurological symptom progression in response to an infection. Increasing evidence suggests that mitochondrial dysfunction may cause chronic inflammation, which may promote hyper-responsiveness to pathogens and neurodegeneration. We sought to examine transcriptional changes between MtD patients and healthy controls to identify common gene signatures of immune dysregulation in MtD. METHODS: We collected whole blood from a cohort of MtD patients and healthy controls and performed RNAseq to examine transcriptomic differences. We performed GSEA analyses to compare our findings against existing studies to identify commonly dysregulated pathways. RESULTS: Gene sets involved in inflammatory signaling, including type I interferons, interleukin-1ß and antiviral responses, are enriched in MtD patients compared to controls. Monocyte and dendritic cell gene clusters are also enriched in MtD patients, while T cell and B cell gene sets are negatively enriched. The enrichment of antiviral response corresponds with an independent set of MELAS patients, and two mouse models of mtDNA dysfunction. CONCLUSIONS: Through the convergence of our results, we demonstrate translational evidence of systemic peripheral inflammation arising from MtD, predominantly through antiviral response gene sets. This provides key evidence linking mitochondrial dysfunction to inflammation, which may contribute to the pathogenesis of primary MtD and other chronic inflammatory disorders associated with mitochondrial dysfunction.


Assuntos
Interferons , Doenças Mitocondriais , Animais , Camundongos , Interferons/genética , Transcriptoma/genética , Inflamação/genética , Inflamação/patologia , Antivirais
2.
Dis Model Mech ; 15(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373506

RESUMO

17q12 deletion (17q12Del) syndrome is a copy number variant (CNV) disorder associated with neurodevelopmental disorders and renal cysts and diabetes syndrome (RCAD). Using CRISPR/Cas9 genome editing, we generated a mouse model of 17q12Del syndrome on both inbred (C57BL/6N) and outbred (CD-1) genetic backgrounds. On C57BL/6N, the 17q12Del mice had severe head development defects, potentially mediated by haploinsufficiency of Lhx1, a gene within the interval that controls head development. Phenotypes included brain malformations, particularly disruption of the telencephalon and craniofacial defects. On the CD-1 background, the 17q12Del mice survived to adulthood and showed milder craniofacial and brain abnormalities. We report postnatal brain defects using automated magnetic resonance imaging-based morphometry. In addition, we demonstrate renal and blood glucose abnormalities relevant to RCAD. On both genetic backgrounds, we found sex-specific presentations, with male 17q12Del mice exhibiting higher penetrance and more severe phenotypes. Results from these experiments pinpoint specific developmental defects and pathways that guide clinical studies and a mechanistic understanding of the human 17q12Del syndrome. This mouse mutant represents the first and only experimental model to date for the 17q12 CNV disorder. This article has an associated First Person interview with the first author of the paper.


Assuntos
Encéfalo , Rim , Feminino , Humanos , Masculino , Camundongos , Animais , Adulto , Camundongos Endogâmicos C57BL , Síndrome , Modelos Animais de Doenças , Glucose , Deleção Cromossômica
3.
Food Chem Toxicol ; 152: 112178, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33831500

RESUMO

Developmental methylmercury (MeHg) exposure selectively targets the cerebral and cerebellar cortices, as seen by disruption of cytoarchitecture and glutamatergic (GLUergic) neuron hypoplasia. To begin to understand the mechanisms of this loss of GLUergic neurons, we aimed to develop a model of developmental MeHg neurotoxicity in human-induced pluripotent stem cells differentiating into cortical GLUergic neurons. Three dosing paradigms at 0.1 µM and 1.0 µM MeHg, which span different stages of neurodevelopment and reflect toxicologically relevant accumulation levels seen in human studies and mammalian models, were established. With these exposure paradigms, no changes were seen in commonly studied endpoints of MeHg toxicity, including viability, proliferation, and glutathione levels. However, MeHg exposure induced changes in mitochondrial respiration and glycolysis and in markers of neuronal differentiation. Our novel data suggests that GLUergic neuron hypoplasia seen with MeHg toxicity may be due to the partial inhibition of neuronal differentiation, given the increased expression of the early dorsal forebrain marker FOXG1 and corresponding decrease in expression on neuronal markers MAP2 and DCX and the deep layer cortical neuronal marker TBR1. Future studies should examine the persistent and latent functional effects of this MeHg-induced disruption of neuronal differentiation as well as transcriptomic and metabolomic alterations that may mediate MeHg toxicity.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Neurônios/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Fatores de Transcrição Forkhead/metabolismo , Glutationa/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Nível de Efeito Adverso não Observado
4.
Toxicol Sci ; 176(2): 446-459, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492146

RESUMO

Manganese (Mn) is an essential metal, but excessive exposures have been well-documented to culminate in neurotoxicity. Curiously, the precise mechanisms of Mn neurotoxicity are still unknown. One hypothesis suggests that Mn exerts its toxicity by inhibiting mitochondrial function, which then (if exposure levels are high and long enough) leads to cell death. Here, we used a Huntington's disease cell model with known differential sensitivities to manganese-STHdhQ7/Q7 and STHdhQ111/Q111 cells-to examine the effects of acute Mn exposure on mitochondrial function. We determined toxicity thresholds for each cell line using both changes in cell number and caspase-3/7 activation. We used a range of acute Mn exposures (0-300 µM), both above and below the cytotoxic threshold, to evaluate mitochondria-associated metabolic balance, mitochondrial respiration, and substrate dependence. In both cell lines, we observed no effect on markers of mitochondrial function at subtoxic Mn exposures (below detectable levels of cell death), yet at supratoxic exposures (above detectable levels of cell death) mitochondrial function significantly declined. We validated these findings in primary striatal neurons. In cell lines, we further observed that subtoxic Mn concentrations do not affect glycolytic function or major intracellular metabolite quantities. These data suggest that in this system, Mn exposure impairs mitochondrial function only at concentrations coincident with or above the initiation of cell death and is not consistent with the hypothesis that mitochondrial dysfunction precedes or induces Mn cytotoxicity.


Assuntos
Manganês , Mitocôndrias/patologia , Neurônios/efeitos dos fármacos , Linhagem Celular , Corpo Estriado/citologia , Humanos , Doença de Huntington/patologia , Manganês/toxicidade
5.
Am J Med Genet A ; 179(11): 2284-2291, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31403263

RESUMO

Aspartate-glutamate carrier 1 (AGC1) is one of two exchangers within the malate-aspartate shuttle. AGC1 is encoded by the SLC25A12 gene. Three patients with pathogenic variants in SLC25A12 have been reported in the literature. These patients were clinically characterized by neurodevelopmental delay, epilepsy, hypotonia, cerebral atrophy, and hypomyelination; however, there has been discussion in the literature as to whether this hypomyelination is primary or secondary to a neuronal defect. Here we report a 12-year-old patient with variants in SLC25A12 and magnetic resonance imaging (MRI) at multiple ages. Novel compound heterozygous, recessive variants in SLC25A12 were identified: c.1295C>T (p.A432V) and c.1447-2_1447-1delAG. Clinical presentation is characterized by severe intellectual disability, nonambulatory, nonverbal status, hypotonia, epilepsy, spastic quadriplegia, and a happy disposition. The serial neuroimaging findings are notable for cerebral atrophy with white matter involvement, namely, early hypomyelination yet subsequent progression of myelination. The longitudinal MRI findings are most consistent with a leukodystrophy of the leuko-axonopathy category, that is, white matter abnormalities that are most suggestive of mechanisms that result from primary neuronal defects. We present here the first case of a patient with compound heterozygous variants in SLC25A12, including brain MRI findings, in the oldest individual reported to date with this neurogenetic condition.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Imageamento por Ressonância Magnética , Proteínas de Transporte da Membrana Mitocondrial/genética , Fenótipo , Criança , Análise Mutacional de DNA , Diagnóstico Diferencial , Progressão da Doença , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla , Humanos , Lactente , Masculino , Proteínas de Transporte da Membrana Mitocondrial/química , Modelos Moleculares , Linhagem , Conformação Proteica , Relação Estrutura-Atividade
6.
Neuron ; 102(6): 1089-1091, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31220439

RESUMO

Copy number variant disorders arise from altering the dosage of multiple contiguous genes. In this issue of Neuron, Fernandez et al. (2019) identify haploinsufficiency of mitochondrial Txnrd2 as an important contributor to the hypo-cortico-cortical connectivity of 22q11 deletion syndrome.


Assuntos
Síndrome da Deleção 22q11 , Disfunção Cognitiva , Síndrome de DiGeorge , Variações do Número de Cópias de DNA , Humanos , Mitocôndrias
7.
Schizophr Res ; 187: 74-81, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28202290

RESUMO

Cholesterol metabolism is vital for brain function. Previous work in cultured cells has shown that a number of psychotropic drugs inhibit the activity of 7-dehydrocholesterol reductase (DHCR7), an enzyme that catalyzes the final steps in cholesterol biosynthesis. This leads to the accumulation of 7-dehydrocholesterol (7DHC), a molecule that gives rise to oxysterols, vitamin D, and atypical neurosteroids. We examined levels of cholesterol and the cholesterol precursors desmosterol, lanosterol, 7DHC and its isomer 8-dehydrocholesterol (8DHC), in blood samples of 123 psychiatric patients on various antipsychotic and antidepressant drugs, and 85 healthy controls, to see if the observations in cell lines hold true for patients as well. Three drugs, aripiprazole, haloperidol and trazodone increased circulating 7DHC and 8DHC levels, while five other drugs, clozapine, escitalopram/citalopram, lamotrigine, olanzapine, and risperidone, did not. Studies in rat brain verified that haloperidol dose-dependently increased 7DHC and 8DHC levels, while clozapine had no effect. We conclude that further studies should investigate the role of 7DHC and 8DHC metabolites, such as oxysterols, vitamin D, and atypical neurosteroids, in the deleterious and therapeutic effects of psychotropic drugs. Finally, we recommend that drugs that increase 7DHC levels should not be prescribed during pregnancy, as children born with DHCR7 deficiency have multiple congenital malformations.


Assuntos
Antidepressivos/efeitos adversos , Antidepressivos/uso terapêutico , Antipsicóticos/efeitos adversos , Antipsicóticos/uso terapêutico , Colestadienóis/sangue , Desidrocolesteróis/sangue , Adulto , Animais , Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Índice de Massa Corporal , Clozapina/efeitos adversos , Clozapina/farmacologia , Clozapina/uso terapêutico , Feminino , Haloperidol/efeitos adversos , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Transtornos Mentais/sangue , Transtornos Mentais/tratamento farmacológico , Escalas de Graduação Psiquiátrica , Distribuição Aleatória , Ratos Sprague-Dawley , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...