Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 703
Filtrar
1.
Obstet Gynecol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39265174

RESUMO

Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) is an autoimmune process resulting in painful epidermal sloughing that can involve the vulva and vagina. Current guideline recommendations are based on expert opinion and may not reflect modern management of SJS/TEN in burn centers. We performed a retrospective chart review of 34 female patients treated for SJS/TEN at our burn center from 2015 to 2023. Cases frequently involved the vulva (83.3%) and vagina (56.0%), though pelvic examination often was limited. For eight patients with confirmed vulvovaginal lesions, there were no direct sequelae of SJS/TEN requiring intervention. In the modern era of SJS/TEN management in burn centers, interventions such as steroids may not be needed.

2.
Trends Biotechnol ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343620

RESUMO

In bone, an adequate oxygen (O2) supply is crucial during development, homeostasis, and healing. Oxygen-generating scaffolds (OGS) have demonstrated significant potential to enhance bone regeneration. However, the complexity of O2 delivery and signaling in vivo makes it challenging to tailor the design of OGS to precisely meet this biological requirement. We review recent advances in OGS and analyze persisting engineering and translational hurdles. We also discuss the potential of computational and machine learning (ML) models to facilitate the integration of novel imaging data with biological readouts and advanced biomanufacturing technologies. By elucidating how to tackle current challenges using cutting-edge technologies, we provide insights for transitioning from traditional to next-generation OGS to improve bone regeneration in patients.

3.
Pharmaceutics ; 16(9)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39339217

RESUMO

The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.

4.
Int J Oncol ; 65(5)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39301628

RESUMO

Following the publication of the above paper, it was drawn to the Editor's attention by concerned readers that ß­actin bands shown in Figs. 1, 2 and 4 were strikingly similar, where the experimental conditions reported in Fig. 4 differed from those in Figs. 1 and 2; moreover, the Slug protein bands featured in Figs. 4a and 5a were remarkably similar in spite of the different experimental conditions that were reported in the respective figure legends, and the shape of the vimentin protein bands in Fig. 5e bore a strong similarity to the Slug protein bands that were featured in Fig. 2c, in spite of the bands being of slightly different sizes and arranged in a different orientation.  Although the possibility of publishing a corrigendum was considered, software analysis of the highlighted bands performed independently by the Editorial Office demonstrated that the bands in question were likely to have been matching bands. Therefore, given the number of potential concerns that were identified with the assembly of various of the figures in this paper, the Editor of International Journal of Oncology has decided not to proceed with a corrigendum, and has determined that the paper should instead be retracted from the Journal on account of an overall lack of confidence in the originally presented data. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Oncology 46: 1461­1472, 2015; DOI: 10.3892/ijo.2015.2878].

5.
Adv Biol (Weinh) ; : e2400113, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294862

RESUMO

Tissue-engineered muscle grafts (TEMGs) are a promising treatment for volumetric muscle loss (VML). In this study, human myogenic progenitors (hMPs) cultured on electrospun fibrin microfiber bundles and evaluated the therapeutic potential of engineered hMP TEMGs in the treatment of murine tibialis anterior (TA) VML injuries is employed. In vitro, the hMP TEMGs express mature muscle markers by 21 days. Upon implantation into VML injuries, the hMP TEMGs enable remarkable regeneration. To further promote wound healing and myogenesis, human adipose-derived stem/stromal cells (hASCs) as fibroadipogenic progenitor (FAP)-like cells with the potential to secrete pro-regenerative cytokines are incorporated. The impact of dose and timing of seeding the hASCs on in vitro myogenesis and VML recovery using hMP-hASC TEMGs are investigated. The hASCs increase myogenesis of hMPs when co-cultured at 5% hASCs: 95% hMPs and with delayed seeding. Upon implantation into immunocompromised mice, hMP-hASC TEMGs increase cell survival, collagen IV deposition, and pro-regenerative macrophage recruitment, but result in excessive adipose tissue growth after 28 days. These data demonstrate the interactions of hASCs and hMPs enhance myogenesis in vitro but there remains a need to optimize treatments to minimize adipogenesis and promote full therapeutic recovery following VML treatment.

6.
Biomed Hub ; 9(1): 108-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145138

RESUMO

Introduction: Percutaneous microwave ablation (MWA) is clinically accepted for the treatment of lung tumors and oligometastatic disease. Bronchoscopic MWA is under development and evaluation in the clinical setting. We previously reported on the development of a bronchoscopy-guided MWA system integrated with clinical virtual bronchoscopy and navigation and demonstrated the feasibility of transbronchial MWA, using a maximum power of 60 W at the catheter input. Here, we assessed the performance of bronchoscopy-guided MWA with an improved catheter (maximum power handling of up to 120 W) in normal porcine lung in vivo (as in the previous study). Methods: A total of 8 bronchoscopy-guided MWA were performed (n = 2 pigs; 4 ablations per pig) with power levels of 90 W and 120 W applied for 5 and 10 min, respectively. Virtual bronchoscopy planning and navigation guided transbronchial or endobronchial positioning of the MWA applicator for ablation of lung parenchyma. Following completion of ablations and post-procedure CT imaging, the lungs were harvested and sectioned for gross and histopathologic ablation analysis. Results: Bronchoscopy-guided MWA with applied energy levels of 90 W/5 min and 120 W/10 min yielded ablation zones with short-axis diameters in the range of 20-28 mm (56-116% increase) as compared to ∼13 mm from our previous study (60 W/10 min). Histology of higher-power and previous lower-power ablations was consistent, including a central necrotic zone, a thermal fixation zone with intact tissue architecture, and a hemorrhagic periphery. Catheter positioning and its confirmation via intra-procedural 3D imaging (e.g., cone-beam CT) proved to be critical for ablation consistency. Conclusion: Bronchoscopy-guided MWA with an improved catheter designed for maximum power 120 W yields large ablations in normal porcine lung in vivo.

7.
Sociol Health Illn ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963685

RESUMO

Smiling is an embodied and complex social act. Smiling is presented as facilitating individual health and wellbeing, but the value placed on smiling raises questions about structural conditions acting on the body. While smiling has been considered sociologically, psychologically and historically, we argue that further exploration of the embodied smile offers fruitful avenues for future research. This article attempts to advance understanding of the smile and its importance by: (I) Bringing together literature on smiling as a social act and smiling as embodied. (II) Systematically identifying key themes, which recognise sociological insights and the relevance of oral health. (III) Pointing to useful directions for future sociological research into smiling. In this article, we review literature on body techniques; impression management and social interaction; gender, race and smiling; and emotional, aesthetic and affective labour. We move on to embodiment, considering the mouth as a body project and in relation to the ageing body, before reflecting on the significance of oral health and dentistry. We highlight future directions for sociological research on smiling, building on eight interrelated and cross-cutting themes: norms and expectations, aesthetic ideals, self and identity, health and wellbeing, body work, commodification and labour, inclusion and exclusion and resistance.

8.
Arterioscler Thromb Vasc Biol ; 44(9): 2053-2068, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38989581

RESUMO

BACKGROUND: In early atherosclerosis, circulating LDLs (low-density lipoproteins) traverse individual endothelial cells by an active process termed transcytosis. The CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) treated advanced atherosclerosis using a blocking antibody for IL-1ß (interleukin-1ß); this significantly reduced cardiovascular events. However, whether IL-1ß regulates early disease, particularly LDL transcytosis, remains unknown. METHODS: We used total internal reflection fluorescence microscopy to quantify transcytosis by human coronary artery endothelial cells exposed to IL-1ß. To investigate transcytosis in vivo, we injected wild-type and knockout mice with IL-1ß and LDL to visualize acute LDL deposition in the aortic arch. RESULTS: Exposure to picomolar concentrations of IL-1ß induced transcytosis of LDL but not of albumin by human coronary artery endothelial cells. Surprisingly, expression of the 2 known receptors for LDL transcytosis, ALK-1 (activin receptor-like kinase-1) and SR-BI (scavenger receptor BI), was unchanged or decreased. Instead, IL-1ß increased the expression of the LDLR (LDL receptor); this was unexpected because LDLR is not required for LDL transcytosis. Overexpression of LDLR had no effect on basal LDL transcytosis. However, knockdown of LDLR abrogated the effect of IL-1ß on transcytosis rates while the depletion of Cav-1 (caveolin-1) did not. Since LDLR was necessary but overexpression had no effect, we reasoned that another player must be involved. Using public RNA sequencing data to curate a list of Rab (Ras-associated binding) GTPases affected by IL-1ß, we identified Rab27a. Overexpression of Rab27a alone had no effect on basal transcytosis, but its knockdown prevented induction by IL-1ß. This was phenocopied by depletion of the Rab27a effector JFC1 (synaptotagmin-like protein 1). In vivo, IL-1ß increased LDL transcytosis in the aortic arch of wild-type but not Ldlr-/- or Rab27a-deficient mice. The JFC1 inhibitor nexinhib20 also blocked IL-1ß-induced LDL accumulation in the aorta. CONCLUSIONS: IL-1ß induces LDL transcytosis by a distinct pathway requiring LDLR and Rab27a; this route differs from basal transcytosis. We speculate that induction of transcytosis by IL-1ß may contribute to the acceleration of early disease.


Assuntos
Vasos Coronários , Células Endoteliais , Interleucina-1beta , Lipoproteínas LDL , Camundongos Knockout , Receptores de LDL , Transdução de Sinais , Transcitose , Proteínas rab de Ligação ao GTP , Interleucina-1beta/metabolismo , Animais , Humanos , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/efeitos dos fármacos , Células Cultivadas , Camundongos Endogâmicos C57BL , Caveolina 1/metabolismo , Caveolina 1/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/patologia , Modelos Animais de Doenças , Aorta Torácica/metabolismo , Aorta Torácica/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Masculino , Camundongos
9.
Acta Biomater ; 185: 126-143, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39009209

RESUMO

Oxygen (O2)-delivering tissue substitutes have shown tremendous potential for enhancing tissue regeneration, maturation, and healing. As O2 is both a metabolite and powerful signaling molecule, providing controlled delivery is crucial for optimizing its beneficial effects in the treatment of critical-sized injuries. Here, we report the design and fabrication of 3D-printed, biodegradable, O2-generating bone scaffold comprising calcium peroxide (CPO) that once hydrolytically activated, provides long-term generation of oxygen at a controlled, concentration-dependent manner, and polycaprolactone (PCL), a hydrophobic polymer that regulate the interaction of CPO with water, preventing burst release of O2 at early time points. When anoxic conditions were simulated in vitro, CPO-PCL scaffolds maintained the survival and proliferation of human adipose-derived stem/stromal cells (hASCs) relative to PCL-only controls. We assessed the in vivo osteogenic efficacy of hASC-seeded CPO-PCL scaffolds implanted in a non-healing critical-sized 4-mm calvarial defects in nude mice for 8 weeks. Even without exogenous osteoinductive factors, CPO-PCL scaffolds demonstrated increased new bone volume compared to PCL-only scaffolds as verified by both microcomputed tomography analysis and histological assessments. Lastly, we employed a quantitative 3D lightsheet microscopy platform to determine that O2-generating scaffolds had similar vascular volumes with slightly higher presence of CD31hiEmcnhi pro-osteogenic, type H vessels and increased number of Osterix+ skeletal progenitor cells relative to PCL-only scaffolds. In summary, 3D-printed O2 generating CPO-PCL scaffolds with tunable O2 release rates provide a facile, customizable strategy for effectively treating, craniofacial bone defects. STATEMENT OF SIGNIFICANCE: Oxygen(O2)-delivering bone substitutes show promise in defect repair applications by supplying O2 to the cells within or around the graft, improving cell survivability and enhancing bone matrix mineralization. A novel O2-generating bone scaffold has been 3D printed for the first-time which ensures patient and defect specificity. 3D printed calcium peroxide-polycaprolactone (CPO-PCL) bone scaffold provides uninterrupted O2 supply for 22 days allowing cell survival in deprived O2 and nutrient conditions. For the first time, O2-driven bone regenerative environment in mice calvaria has been captured by light-sheet imaging which illuminates abundance of Osterix+ cells, angiogenesis at a single cell resolution indicating active site of bone remodeling and growth in the presence of O2.


Assuntos
Camundongos Nus , Osteogênese , Oxigênio , Poliésteres , Impressão Tridimensional , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Oxigênio/química , Oxigênio/farmacologia , Humanos , Poliésteres/química , Poliésteres/farmacologia , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Camundongos , Peróxidos/química , Peróxidos/farmacologia , Cicatrização/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos
10.
PhytoKeys ; 243: 47-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938542

RESUMO

Myrsinecirrhosa Lorence & K.R.Wood (Primulaceae), a new single-island endemic shrub species from Kaua'i, Hawaiian Islands, is described and illustrated. Notes on its distribution, ecology and conservation status are included. The new species is known from an area with ca. 45 individuals, where it is restricted to the remote central windward region of Kaua'i in open bogs and along open windy ridges. Suggested IUCN Red List status is CR (Critically Endangered). It differs from its Kaua'i congeners by its longer petals and narrowly elliptic leaves with strongly undulate margins and tendril-like apex. Phylogenetic analysis using RADseq data supports the recognition of this new species.

11.
Circ Res ; 135(2): 335-349, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38828596

RESUMO

BACKGROUND: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS: We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS: Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDL particles relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS: Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.


Assuntos
Apolipoproteína A-I , Aterosclerose , Diabetes Mellitus Tipo 1 , Receptores de LDL , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apolipoproteína A-I/sangue , Apolipoproteína A-I/metabolismo , Apolipoproteína B-100/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/sangue , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/sangue , Aterosclerose/patologia , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/sangue , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/sangue , Modelos Animais de Doenças , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de LDL/genética , Receptores de LDL/deficiência , Receptores de LDL/metabolismo
12.
ACS Biomater Sci Eng ; 10(6): 3896-3908, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38748191

RESUMO

Microfluidic spinning is emerging as a useful technique in the fabrication of alginate fibers, enabling applications in drug screening, disease modeling, and disease diagnostics. In this paper, by capitalizing on the benefits of aqueous two-phase systems (ATPS) to produce diverse alginate fiber forms, we introduce an ATPS-Spinning platform (ATPSpin). This ATPS-enabled method efficiently circumvents the rapid clogging challenges inherent to traditional fiber production techniques by regulating the interaction between alginate and cross-linking agents like Ba2+ ions. By varying system parameters under the guidance of a regime map, our system produces several fiber forms─solid, hollow, and droplet-filled─consistently and reproducibly from a single device. We demonstrate that the resulting alginate fibers possess distinct features, including biocompatibility. We also encapsulate HEK293 cells in the microfibers as a proof-of-concept that this versatile microfluidic fiber generation platform may have utility in tissue engineering and regenerative medicine applications.


Assuntos
Alginatos , Alginatos/química , Humanos , Células HEK293 , Microfluídica/métodos , Microfluídica/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química
13.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617372

RESUMO

Calvarial nerves, along with vasculature, influence skull formation during development and following injury, but it remains unclear how calvarial nerves are spatially distributed during postnatal growth and aging. Studying the spatial distribution of nerves in the skull remains challenging due to a lack of methods to image and quantify 3D structures in intact bone. To visualize calvarial 3D neurovascular architecture, we imaged nerves and endothelial cells with lightsheet microscopy. We employed machine-learning-based segmentation to facilitate high-resolution characterization from post-natal day 0 (P0) to Week 80 (80wk). We found that TUBB3+ nerve density decreased with aging with the frontal bone demonstrating earlier onset age-related nerve loss than the parietal bone. In addition, nerves in the periosteum and dura mater exhibited similar yet distinct temporal patterns of nerve growth and loss. While no difference was observed in TUBB3+ nerves during skeletal maturation (P0 → 12wk), we did observe an increase in the volume of unmyelinated nerves in the dura mater. Regarding calvarial vasculature, larger CD31hiEmcn- vessel density increased with aging, while CD31hiEmcnhi vessel density was reduced. For all nerve markers studied, calvarial nerves maintained a preferential spatial association with CD31hiEmcnhi vessels that decreased with aging. Additionally, we used a model of Apert syndrome that demonstrates early coronal suture fusion to explore the impact of suture-related disease on neurovascular architecture. We identified a mild dysregulation of dural nerves and minor shifts in vessel populations. Collectively, this 3D, spatiotemporal characterization of calvarial nerves throughout the lifespan and provides new insights into age-induced neurovascular architecture.

14.
Bioengineering (Basel) ; 11(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38671729

RESUMO

Static cold storage (SCS), the current clinical gold standard for organ preservation, provides surgeons with a limited window of time between procurement and transplantation. In vascularized composite allotransplantation (VCA), this time limitation prevents many viable allografts from being designated to the best-matched recipients. Machine perfusion (MP) systems hold significant promise for extending and improving organ preservation. Most of the prior MP systems for VCA have been built and tested for large animal models. However, small animal models are beneficial for high-throughput biomolecular investigations. This study describes the design and development of a multiparametric bioreactor with a circuit customized to perfuse rat abdominal wall VCAs. To demonstrate its concept and functionality, this bioreactor system was employed in a small-scale demonstrative study in which biomolecular metrics pertaining to graft viability were evaluated non-invasively and in real time. We additionally report a low incidence of cell death from ischemic necrosis as well as minimal interstitial edema in machine perfused grafts. After up to 12 h of continuous perfusion, grafts were shown to survive transplantation and reperfusion, successfully integrating with recipient tissues and vasculature. Our multiparametric bioreactor system for rat abdominal wall VCA provides an advanced framework to test novel techniques to enhance normothermic and sub-normothermic VCA preservations in small animal models.

15.
J Lipid Res ; 65(4): 100530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479648

RESUMO

Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas LDL , Transcitose , Animais , Humanos , Masculino , Camundongos , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Ligação Proteica , Receptores Depuradores Classe B/metabolismo
16.
Diabetologia ; 67(6): 1138-1154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489029

RESUMO

AIMS/HYPOTHESIS: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS: Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION: Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.


Assuntos
Permeabilidade Capilar , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Animais , Vesículas Extracelulares/metabolismo , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Humanos , Masculino , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Proteômica , Camundongos Endogâmicos C57BL
17.
Midwifery ; 132: 103952, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442530

RESUMO

AIM: This study aimed to explore student midwives' theoretical knowledge of intrapartum intermittent auscultation, their confidence in, and their experience of this mode of fetal monitoring. DESIGN AND SETTING: An online cross-section survey with closed and open questions. Descriptive statistics were used to analyse participants' intermittent auscultation knowledge, confidence, and experience. Reflexive thematic analysis was used to identify patterns within the free text about participants' experiences. PARTICIPANTS: Undergraduate midwifery students (n = 303) from Nursing and Midwifery Council-approved educational institutions within the United Kingdom. FINDINGS: Most participants demonstrated good theoretical knowledge. They had witnessed the technique being used in clinical practice, and when performed, the practice was reported to be in line with national guidance. In closed questions, participants reported feeling confident in their intermittent auscultation skills; however, these data contrasted with free-text responses. CONCLUSION: This cross-sectional survey found that student midwives possess adequate knowledge of intermittent auscultation. However, reflecting individual clinical experiences, their confidence in their ability to perform intermittent auscultation varied. A lack of opportunity to practice intermittent auscultation, organisational culture, and midwives' preferences have caused student midwives to question their capabilities with this essential clinical skill, leaving some with doubt about their competency close to registration.


Assuntos
Competência Clínica , Estudantes de Enfermagem , Humanos , Estudos Transversais , Feminino , Reino Unido , Estudantes de Enfermagem/estatística & dados numéricos , Estudantes de Enfermagem/psicologia , Inquéritos e Questionários , Adulto , Competência Clínica/normas , Competência Clínica/estatística & dados numéricos , Gravidez , Enfermeiros Obstétricos/estatística & dados numéricos , Enfermeiros Obstétricos/educação , Enfermeiros Obstétricos/psicologia , Frequência Cardíaca Fetal/fisiologia , Tocologia/educação , Tocologia/métodos , Tocologia/estatística & dados numéricos , Bacharelado em Enfermagem/métodos , Auscultação/métodos , Auscultação/estatística & dados numéricos , Auscultação/normas
18.
Curr Dev Nutr ; 8(Suppl 1): 102027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38476725

RESUMO

Populations in low- and middle-income countries (LMIC) typically consume less than the recommended daily amount of protein. Alternative protein (AP) sources could help combat malnutrition, but this requires careful consideration of elements needed to further establish AP products in LMIC. Key considerations include technological, nutritional, safety, social, and economic challenges. This perspective analyzes these considerations in achieving dietary diversity in LMIC, using a combination of traditional and novel protein sources with high nutritional value, namely, soy, mycoprotein, and cultivated meat. Technological approaches to modulate the technofunctionality and bitter off-tastes of plant-sourced proteins facilitate processing and ensure consumer acceptance. Economic considerations for inputs, infrastructure for production, and transportation represent key elements to scale up AP. Dietary diversification is indispensable and LMIC cannot rely on plant proteins alone to provide adequate protein intake sustainably. Investments in infrastructure and innovation are urgently needed to offer diverse sources of protein in LMIC.

19.
Sci Adv ; 10(13): eadm9859, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536921

RESUMO

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glutamina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores Enzimáticos/uso terapêutico , Mutação
20.
Int J Hyperthermia ; 41(1): 2313492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369302

RESUMO

BACKGROUND: Despite the theoretical advantages of treating metastatic bone disease with microwave ablation (MWA), there are few reports characterizing microwave absorption and bioheat transfer in bone. This report describes a computational modeling-based approach to simulate directional microwave ablation (dMWA) in spine, supported by ex vivo and pilot in vivo experiments in porcine vertebral bodies. MATERIALS AND METHODS: A 3D computational model of microwave ablation within porcine vertebral bodies was developed. Ex vivo porcine vertebra experiments using a dMWA applicator measured temperatures approximately 10.1 mm radially from the applicator in the direction of MW radiation (T1) and approximately 2.4 mm in the contra-lateral direction (T2). Histologic assessment of ablated ex vivo tissue was conducted and experimental results compared to simulations. Pilot in vivo experiments in porcine vertebral bodies assessed ablation zones histologically and with CT and MRI. RESULTS: Experimental T1 and T2 temperatures were within 3-7% and 11-33% of simulated temperature values. Visible ablation zones, as indicated by grayed tissue, were smaller than those typical in other soft tissues. Posthumous MRI images of in vivo ablations showed hyperintensity. In vivo experiments illustrated the technical feasibility of creating directional microwave ablation zones in porcine vertebral body. CONCLUSION: Computational models and experimental studies illustrate the feasibility of controlled dMWA in bone tissue.


Assuntos
Técnicas de Ablação , Ablação por Cateter , Ablação por Radiofrequência , Suínos , Animais , Técnicas de Ablação/métodos , Micro-Ondas/uso terapêutico , Simulação por Computador , Coluna Vertebral/cirurgia , Fígado/cirurgia , Ablação por Cateter/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA