Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Anat Rec (Hoboken) ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924671

RESUMO

It is presumed that the unusual central location of mesencephalic trigeminal neurons is a specialization that allows them to receive synaptic input. However, relatively few synaptic terminals were observed on the somata of mesencephalic trigeminal neurons in macaque monkeys via electron microscopy. This leaves the question of dendritic synaptic terminals open. Unlike the pseudounipolar neurons found in the trigeminal ganglion, some mesencephalic trigeminal neurons have been reported to be multipolar cells exhibiting a number of dendritic processes in non-primate species. To examine whether this morphological feature was also present in macaque monkeys, we retrogradely filled these cells with biotinylated dextran amine by injecting it into the trigeminal nerve entry zone. A portion of the mesencephalic trigeminal neurons exhibited short, poorly branched, dendritic processes. They also exhibited very fine, short processes believed to be somatic spines. Thus, primate trigeminal mesencephalic neurons appear to have specializations aimed at increasing the membrane surface area available for synaptic input.

2.
Brain Struct Funct ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240754

RESUMO

Saccade accommodation is a productive model for exploring the role of the cerebellum in behavioral plasticity. In this model, the target is moved during the saccade, gradually inducing a change in the saccade vector as the animal adapts. The climbing fiber pathway from the inferior olive provides a visual error signal generated by the superior colliculus that is believed to be crucial for cerebellar adaptation. However, the primate tecto-olivary pathway has only been explored using large injections of the central portion of the superior colliculus. To provide a more detailed picture, we have made injections of anterograde tracers into various regions of the macaque superior colliculus. As shown previously, large central injections primarily label a dense terminal field within the C subdivision at caudal end of the contralateral medial inferior olive. Several, previously unobserved, sites of sparse terminal labeling were noted: bilaterally in the dorsal cap of Kooy and ipsilaterally in the C subdivision of the medial inferior olive. Small, physiologically directed, injections into the rostral, small saccade portion of the superior colliculus produced terminal fields in the same regions of the medial inferior olive, but with decreased density. Small injections of the caudal superior colliculus, where large amplitude gaze changes are encoded, again labeled a terminal field located in the same areas. The lack of a topographic pattern within the main tecto-olivary projection suggests that either the precise vector of the visual error is not transmitted to the vermis, or that encoding of this error is via non-topographic means.

3.
Res Sq ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398093

RESUMO

Saccade accommodation is a productive model for exploring the role of the cerebellum in behavioral plasticity. In this model, the target is moved during the saccade, gradually inducing a change in the saccade vector as the animal adapts. The climbing fiber pathway from the inferior olive provides a visual error signal generated by the superior colliculus that is believed to be crucial for cerebellar adaptation. However, the primate tecto-olivary pathway has only been explored using large injections of the central portion of the superior colliculus. To provide a more detailed picture, we have made injections of anterograde tracers into various regions of the macaque superior colliculus. As shown previously, large central injections primarily label a dense terminal field within the C subdivision at caudal end of the contralateral medial inferior olive. Several, previously unobserved, sites of sparse terminal labeling were noted: bilaterally in the dorsal cap of Kooy and ipsilaterally in C subdivision of the medial inferior olive. Small, physiologically directed, injections into the rostral, small saccade portion of the superior colliculus produced terminal fields in the same regions of the medial inferior olive, but with decreased density. Small injections of the caudal superior colliculus, where large amplitude gaze changes are encoded, again labeled a terminal field located in the same areas. The lack of a topographic pattern within the main tecto-olivary projection suggests that either the precise vector of the visual error is not transmitted to the vermis, or that encoding of this error is via non-topographic means.

4.
Exp Brain Res ; 241(8): 2145-2162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37474798

RESUMO

Physiological studies indicate that the central mesencephalic reticular formation (cMRF) plays a role in gaze changes, including control of disjunctive saccades. Neuroanatomical studies have demonstrated strong interconnections with the superior colliculus, along with projections to extraocular motor nuclei, the preganglionic nucleus of Edinger-Westphal, the paramedian pontine reticular formation, nucleus raphe interpositus, medullary reticular formation and cervical spinal cord, as might be expected for a structure that is intimately involved in gaze control. However, the sources of input to this midbrain structure have not been described in detail. In the present study, the brainstem cells of origin supplying the cMRF were labeled by retrograde transport of tracer (wheat germ agglutinin conjugated horseradish peroxidase) in macaque monkeys. Within the diencephalon, labeled neurons were noted in the ventromedial nucleus of the hypothalamus, pregeniculate nucleus and habenula. In the midbrain, labeled cells were found in the substantia nigra pars reticulata, medial pretectal nucleus, superior colliculus, tectal longitudinal column, periaqueductal gray, supraoculomotor area, and contralateral cMRF. In the pons they were located in the paralemniscal zone, parabrachial nucleus, locus coeruleus, nucleus prepositus hypoglossi and the paramedian pontine reticular formation. Finally, in the medulla they were observed in the medullary reticular formation. The fact that this list of input sources is very similar to those of the superior colliculus supports the view that the cMRF represents an important gaze control center.


Assuntos
Macaca , Formação Reticular Mesencefálica , Animais , Tronco Encefálico , Mesencéfalo , Formação Reticular/fisiologia , Peroxidase do Rábano Silvestre
5.
Brain Struct Funct ; 227(7): 2367-2393, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35871423

RESUMO

Historically, the central mesencephalic reticular formation has been regarded as a purely horizontal gaze center based on the fact that electrical stimulation of this region produces horizontal saccades, it provides monosynaptic input to medial rectus motoneurons, and cells recorded in this region often display a peak in firing when horizontal saccades are made. We tested the proposition that the central mesencephalic reticular formation is purely a horizontal gaze center by examining whether this region also supplies terminals to superior rectus and levator palpebrae superioris motoneurons, both of which fire when making vertical eye movements. The experiments were carried out using dual tracer techniques at the light and electron microscopic level in macaque monkeys. Injections of biotinylated dextran amine or Phaseolus vulgaris leukoagglutinin into the central mesencephalic reticular formation produced anterogradely labeled terminals that were in synaptic contact with superior rectus and levator palpebrae superioris motoneurons that had been retrogradely labeled. These results indicate that this region is not purely connected with horizontal gaze motoneurons. In addition, we found that the number of contacts on vertical gaze motoneurons increased with more rostral injections involving the mesencephalic reticular formation adjacent to the interstitial nucleus of Cajal. This suggests that there is a caudal to rostral gradient for horizontal to vertical saccades, respectively, represented within the midbrain reticular formation. Finally, we utilized post-embedding immunohistochemistry to show that a portion of the labeled terminals were GABAergic, indicating they likely originate from downgaze premotor neurons.


Assuntos
Formação Reticular Mesencefálica , Movimentos Oculares , Neurônios Motores , Músculos Oculomotores , Formação Reticular , Movimentos Sacádicos
6.
Invest Ophthalmol Vis Sci ; 63(1): 35, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084433

RESUMO

Purpose: Under real-world conditions, saccades are often accompanied by changes in vergence angle and lens accommodation that compensate for changes in the distance between the current fixation point and the next target. As the superior colliculus directs saccades, we examined whether it contains premotor neurons that might control lens compensation for target distance. Methods: Rabies virus or recombinant rabies virus was injected into the ciliary bodies of Macaca fascicularis monkeys to label circuits controlling lens accommodation via retrograde transsynaptic transport. In addition, conventional anterograde tracers were used to confirm the rabies findings with respect to projections to preganglionic Edinger-Westphal motoneurons. Results: At time courses that rabies virus labeled lens-related premotor neurons in the supraoculomotor area and central mesencephalic reticular formation, labeled neurons were not found within the superior colliculus. They were, however, found bilaterally in the medial pretectal nucleus continuing caudally into the tectal longitudinal column, which lies on the midline, between the colliculi. A bilateral projection by this area to the preganglionic Edinger-Westphal nucleus was confirmed by anterograde tracing. Only at longer time courses were cells labeled in the superior colliculus. Conclusions: The superior colliculus does not provide premotor input to preganglionic Edinger-Westphal nucleus motoneurons, but may provide input to lens-related premotor populations in the supraoculomotor area and central mesencephalic reticular formation. There is, however, a novel third population of lens-related premotor neurons in the tectal longitudinal column and rostrally adjacent medial pretectal nucleus. The specific function of this premotor population remains to be determined.


Assuntos
Acomodação Ocular/fisiologia , Núcleo de Edinger-Westphal/fisiologia , Animais , Feminino , Macaca fascicularis , Masculino , Modelos Animais , Neurônios Motores/fisiologia , Vias Neurais
7.
Talanta ; 238(Pt 2): 123039, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801896

RESUMO

The overall aim of the work was to advance electrochemical devices capable of analysis of forensically relevant residues using rapid electrochemical sensor technology. In order to achieve this, electrochemical detection of the propellant stabiliser diphenylamine (DPA) was achieved via voltammetry with signal enhancement realised in the presence of iron oxide nanoparticle modified transducers. This allowed both mechanistic and analytical evaluation with the aim to achieve the required selectivity and sensitivity for reliable detection. DPA electrochemistry was examined at glassy carbon electrodes in aqueous (3:7 methanol: sodium acetate pH 4.3) electrolyte via potential sweeping, with an irreversible wave at Ep = 0.67 V vs. Ag/AgCl. The diffusion coefficient (D) for the oxidation process was calculated as 1.43 × 10-6 cm2 s-1 with αna = 0.7. DPA electrochemistry in a non aqueous methanol/acetonitrile electrolyte resulted in a D value of 5.47 × 10-8 cm2 s-1 with αna = 0.5. Electrochemical preparation of magnetic iron oxide nanoparticles was achieved via electrooxidation of an iron anode in the presence of an amine surfactant followed by characterisation with SEM/EDX, XRD, FTIR and thermal analysis. A surface confined layer of these magnetic nanoparticles served to positively influence the response to DPA while impeding formation of surface confined oxidation products, with generation of an improved analytical signal - sensitivity 1.13× 10-3 A cm-2 mM-1 relative to bare electrode response (9.80 × 10-4 A cm-2 mM-1) over the range 0.5-50 µM DPA using differential pulse voltammetry, with LOD 3.51 × 10-6 M and LOQ 1.17 × 10-5 M. Real sample analysis involved recovery and differential pulse voltammetry of unburnt and burnt gunshot residue with DPA qualitative and quantitative analysis.


Assuntos
Difenilamina , Nanopartículas de Magnetita , Carbono , Eletroquímica , Eletrodos
8.
J Comp Neurol ; 529(14): 3389-3409, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34101199

RESUMO

For normal viewing, the eyes are held open by the tonic actions of the levator palpebrae superioris (levator) muscle raising the upper eyelid. This activity is interrupted during blinks, when the eyelid sweeps down to spread the tear film or protect the cornea. We examined the circuit connecting the principal trigeminal nucleus to the levator motoneurons by use of both anterograde and retrograde tracers in macaque monkeys. Injections of anterograde tracer were made into the principal trigeminal nucleus using either a stereotaxic approach or localization following physiological characterization of trigeminal second order neurons. Anterogradely labeled axonal arbors were located both within the caudal central subdivision, which contains levator motoneurons, and in the adjacent supraoculomotor area. Labeled boutons made synaptic contacts on retrogradely labeled levator motoneurons indicating a monosynaptic connection. As the eye is also retracted through the actions of the rectus muscles during a blink, we examined whether these trigeminal injections labeled boutons contacting rectus motoneurons within the oculomotor nucleus. These were not found when the injection sites were confined to the principal trigeminal nucleus region. To identify the source of the projection to the levator motoneurons, we injected retrograde tracer into the oculomotor complex. Retrogradely labeled cells were confined to a narrow, dorsoventrally oriented cell population that lined the rostral edge of the principal trigeminal nucleus. Presumably these cells inhibit levator motoneurons, while other parts of the trigeminal sensory complex are activating orbicularis oculi motoneurons, when a blink is initiated by sensory stimuli contacting the face.


Assuntos
Piscadela/fisiologia , Pálpebras/inervação , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Nervo Trigêmeo/fisiologia , Animais , Pálpebras/fisiologia , Feminino , Macaca fascicularis , Macaca mulatta , Masculino , Nervo Oculomotor/fisiologia , Terminações Pré-Sinápticas/fisiologia , Reflexo , Núcleos do Trigêmeo/fisiologia
9.
Vis Neurosci ; 38: E007, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33977889

RESUMO

Since most gaze shifts are to targets that lie at a different distance from the viewer than the current target, gaze changes commonly require a change in the angle between the eyes. As part of this response, lens curvature must also be adjusted with respect to target distance by the ciliary muscle. It has been suggested that projections by the cerebellar fastigial and posterior interposed nuclei to the supraoculomotor area (SOA), which lies immediately dorsal to the oculomotor nucleus and contains near response neurons, support this behavior. However, the SOA also contains motoneurons that supply multiply innervated muscle fibers (MIFs) and the dendrites of levator palpebrae superioris motoneurons. To better determine the targets of the fastigial nucleus in the SOA, we placed an anterograde tracer into this cerebellar nucleus in Macaca fascicularis monkeys and a retrograde tracer into their contralateral medial rectus, superior rectus, and levator palpebrae muscles. We only observed close associations between anterogradely labeled boutons and the dendrites of medial rectus MIF and levator palpebrae motoneurons. However, relatively few of these associations were present, suggesting these are not the main cerebellar targets. In contrast, labeled boutons in SOA, and in the adjacent central mesencephalic reticular formation (cMRF), densely innervated a subpopulation of neurons. Based on their location, these cells may represent premotor near response neurons that supply medial rectus and preganglionic Edinger-Westphal motoneurons. We also identified lens accommodation-related cerebellar afferent neurons via retrograde trans-synaptic transport of the N2c rabies virus from the ciliary muscle. They were found bilaterally in the fastigial and posterior interposed nuclei, in a distribution which mirrored that of neurons retrogradely labeled from the SOA and cMRF. Our results suggest these cerebellar neurons coordinate elements of the near response during symmetric vergence and disjunctive saccades by targeting cMRF and SOA premotor neurons.


Assuntos
Neurônios Motores , Músculos Oculomotores , Animais , Macaca fascicularis , Tegmento Mesencefálico
10.
J Sci Food Agric ; 101(12): 5256-5263, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33616203

RESUMO

BACKGROUND: Near-infrared (NIR) spectroscopy coupled with principal component analysis (PCA) and partial least squares (PLS) regression was used to analyse a series of different Irish Whiskey samples in order to define their spectral profile and to assess the capability of the NIR method to identify samples based on their origin and storage (e.g. distiller, method of maturation). The ability of NIR spectroscopy to quantify the level of potential chemical adulterants was also investigated. Samples were spiked with 0.1%, 0.5%, 1.0%, 1.5% and 2.0% v/v of each adulterant (e.g. methanol, ethyl acetate, etc.) prior to NIR analysis. RESULTS: The results of this study demonstrated the capability of NIR spectroscopy combined with PLS regression to classify the whiskey samples and to determine the level of adulteration. Moreover, the potential of NIR coupled with chemometric analysis as a rapid, portable, and non-destructive screening tool for quality control, traceability, and food/beverage adulteration for customs and other regulatory agencies, to mitigate beverage fraud was illustrated. CONCLUSION: Given the non-specificity of the NIR technique, these positive preliminary results indicated that this method of analysis has the potential to be applied to identify the level of adulteration in distilled spirits. The rapid nature of the technique and lack of consumables or sample preparation required allows for a far more time and cost-effective analysis per sample. © 2021 Society of Chemical Industry.


Assuntos
Contaminação de Alimentos/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Vinho/análise , Análise Discriminante , Análise dos Mínimos Quadrados , Análise de Componente Principal , Vinho/classificação
11.
J Comp Neurol ; 529(11): 2842-2864, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33598920

RESUMO

The trigeminal blink reflex plays an important role in protecting the corneal surface from damage and preserving visual function in an unpredictable environment. The closing phase of the human reflex, produced by activation of the orbicularis oculi (ObOc) muscles, consists of an initial, small, ipsilateral R1 component, followed by a larger, bilateral R2 component. We investigated the circuitry that underlies this reflex in macaque (Macaca fascicularis and Macaca mulatta) monkeys by the use of single and dual tracer methods. Injection of retrograde tracer into the facial nucleus labeled neurons in the principal trigeminal nucleus, and in the spinal nucleus pars oralis and interpolaris, bilaterally, and in pars caudalis, ipsilaterally. Injection of anterograde tracer into the principal trigeminal nucleus labeled axons that directly terminated on ObOc motoneurons, with an ipsilateral predominance. Injection of anterograde tracer into pars caudalis of the spinal trigeminal nucleus labeled axons that directly terminated on ipsilateral ObOc motoneurons. The observed pattern of labeling indicates that the reticular formation ventromedial to the principal and spinal nuclei also contributes extensive bilateral input to ObOc motoneurons. Thus, much of the trigeminal sensory complex is in a position to supply a monosynaptic drive for lid closure, and the adjacent reticular formation can supply a disynaptic drive. These findings indicate that the assignment of the R1 and R2 components of the blink reflex to different parts of the trigeminal sensory complex cannot be exclusively based on subdivision connectional relationships with facial motoneurons. The characteristics of the R2 component may be due, instead, to other circuit properties.


Assuntos
Piscadela/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Núcleo Espinal do Trigêmeo/fisiologia , Animais , Feminino , Macaca fascicularis , Macaca mulatta , Masculino , Neurônios Motores/química , Neurônios Motores/ultraestrutura , Rede Nervosa/química , Rede Nervosa/ultraestrutura , Núcleo Espinal do Trigêmeo/química , Núcleo Espinal do Trigêmeo/ultraestrutura
12.
Vis Neurosci ; 382021.
Artigo em Inglês | MEDLINE | ID: mdl-36438664

RESUMO

A projection by the superior colliculus to the supraoculomotor area (SOA) located dorsal to the oculomotor complex was first described in 1978. This projection's targets have yet to be identified, although the initial study suggested that vertical gaze motoneuron dendrites might receive this input. Defining the tectal targets is complicated by the fact the SOA contains a number of different cell populations. In the present study, we used anterograde tracers to characterize collicular axonal arbors and retrograde tracers to label prospective SOA target populations in macaque monkeys. Close associations were not found with either superior or medial rectus motoneurons whose axons supply singly innervated muscle fibers. S-group motoneurons, which supply superior rectus multiply innervated muscle fibers, appeared to receive a very minor input, but C-group motoneurons, which supply medial rectus multiply innervated muscle fibers, received no input. A number of labeled boutons were observed in close association with SOA neurons projecting to the spinal cord, or the reticular formation in the pons and medulla. These descending output neurons are presumed to be peptidergic cells within the centrally projecting Edinger-Westphal population. It is possible the collicular input provides a signaling function for neurons in this population that serve roles in either stress responses, or in eating and drinking behavior. Finally, a number of close associations were observed between tectal terminals and levator palpebrae superioris motoneurons, suggesting the possibility that the superior colliculus provides a modest direct input for raising the eyelids during upward saccades.

13.
Front Neuroanat ; 14: 562673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041774

RESUMO

The ventral posterior medial nucleus (VPM) is amandatory relay for orofacial sensory information targeting the primary somatosensory cortex. We characterized the morphology of VPM axons arising in the principal trigeminal sensory nucleus (pV) through injections of biotinylated dextran amine (BDA) placed in pV of Macaca fascicularis and mulatta monkeys. Labeled terminals formed a patchy bilateral distribution. Within contralateral VPM, patches were found primarily, but not exclusively, within the laterally located, vertical segment, and in ipsilateral VPM, primarily, but not exclusively, in the medially located, horizontal segment. Two fiber types were labeled: thin and thick. Thin fibers were poorly branched and diffusely distributed. They were studded with small en passant boutons. Most labeled fibers were thick and they branched extensively to form distinctive terminal arbors decorated with numerous boutons that varied in size and shape. Quantitative analysis of thick fiber arbor features showed little difference between the sides, although contralateral boutons were significantly larger than ipsilateral ones. Bouton distribution with respect to counterstained somata suggests that proximal dendrites are their main target. Indeed, ultrastructural examination demonstrated that they provide large diameter dendrites with numerous contacts. Direct comparison of thick fiber terminal arbors to cytochrome oxidase (CO) staining revealed that these arbors are much smaller than individual CO-rich patches believed to designate rods containing discrete body area representations. Thus, each terminal arbor appears to heavily innervate a small number of VPM neurons within a rod. This relationship would serve to maintain relatively small receptive fields within the topographic representation of the face.

14.
J Obstet Gynecol Neonatal Nurs ; 49(2): 181-189, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32057686

RESUMO

OBJECTIVE: To determine whether delaying the newborn bath by 24 hours increases the prevalence of breastfeeding initiation and exclusive breastfeeding at discharge in healthy full-term and late preterm newborns (34 0/7-36 6/7 weeks gestation) and to examine the effect of delayed newborn bathing on the incidences of hypothermia and hypoglycemia. DESIGN: Pre-post implementation, retrospective, cohort study. SETTING: Provincial children's hospital with an average of 2,500 births per year. PARTICIPANTS: Healthy newborns (N = 1,225) born at 34 0/7 weeks or more gestation who were admitted to the mother-baby unit. METHODS: We compared newborns who were bathed before 24 hours (n = 680, preimplementation group) to newborns who were bathed after 24 hours (n = 545, postimplementation group). RESULTS: After adjustment for confounders, the odds of exclusive breastfeeding at discharge were 33% greater in the postimplementation group than in the preimplementation group (adjusted odds ratio = 1.334; 95% confidence interval [1.049,1.698]; p = .019). Delayed bathing was associated with decreased incidence of hypothermia and hypoglycemia (p = .007 and p = .003, respectively). We observed no difference in breastfeeding initiation between groups. CONCLUSION: Delaying the newborn bath for 24 hours was associated with an increased likelihood of exclusive breastfeeding at discharge and a decreased incidence of hypothermia and hypoglycemia in healthy newborns. The implementation of a delayed bathing policy has the potential to improve breastfeeding rates and reduce the incidence of hypothermia and hypoglycemia.


Assuntos
Banhos/efeitos adversos , Aleitamento Materno/métodos , Hipoglicemia/etiologia , Hipotermia/etiologia , Fatores de Tempo , Banhos/métodos , Estudos de Coortes , Feminino , Humanos , Hipoglicemia/fisiopatologia , Hipotermia/fisiopatologia , Recém-Nascido , Masculino , Razão de Chances , Estudos Retrospectivos
15.
Brain Struct Funct ; 225(1): 305-320, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31848686

RESUMO

The olivary pretectal nucleus is the first central connection in the pupillary light reflex pathway, the circuit that adjusts the diameter of the pupil in response to ambient light levels. This study investigated aspects of the morphology and connectivity of the olivary pretectal nucleus in macaque monkeys by use of anterograde and retrograde tracers. Within the pretectum, the vast majority of neurons projecting to the preganglionic Edinger-Westphal nucleus were found within the olivary pretectal nucleus. Most of these neurons had somata located at the periphery of the nucleus and their heavily branched dendrites extended into the core of the nucleus. Retinal terminals were concentrated within the borders of the olivary pretectal nucleus. Ultrastructural examination of these terminals showed that they had clear spherical vesicles, occasional dense-core vesicles, and made asymmetric synaptic contacts. Retrogradely labeled cells projecting to the preganglionic Edinger-Westphal nucleus displayed relatively few somatic contacts. Double labeling indicated that these neurons receive direct retinal input. The concentration of retinal terminals within the nucleus and the extensive dendritic trees of the olivary projection cells provide a substrate for very large receptive fields. In some species, pretectal commissural connections are a substrate for balancing the direct and consensual pupillary responses to produce pupils of equal size. In the macaque, there was little evidence for such a commissural projection based on either anterograde or retrograde tracing. This may be due to the fact that each macaque retina provides nearly equal density projections to the ipsilateral and contralateral olivary pretectal nucleus.


Assuntos
Núcleo de Edinger-Westphal/citologia , Neurônios/citologia , Área Pré-Tectal/citologia , Reflexo Pupilar , Retina/citologia , Animais , Núcleo de Edinger-Westphal/fisiologia , Feminino , Macaca fascicularis , Masculino , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Área Pré-Tectal/fisiologia , Retina/fisiologia
16.
Biosens Bioelectron ; 137: 15-24, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31077986

RESUMO

Herein we report the use of scanning electrochemical microscopy (SECM) together with electrochemical and spectroscopic techniques to develop and characterise a stable and uniformly reactive chemically modified platinum electrode for NADH electrocatalysis. In order to achieve this, a range of different approaches for thionine entrapment within an electropolymerised poly (3,4-ethylendioxythiophene) (PEDOT) film were evaluated using SECM imaging in the presence of NADH, demonstrating the uniformity of the reactive layer towards NADH oxidation. The effect of electrolyte type and time scale employed during PEDOT electropolymerisation was examined with respect to thionine loading and the resulting charge transport diffusion coefficient (DCT) estimated via chronoamperometry. These studies indicated a decrease in DCT as thionine loading increased within the PEDOT film, suggesting that charge transport was diffusion limited within the film. Additionally, thionine functionalised nanotubes were formed, providing a stable support for lactate dehydrogenase entrapment while lowering the rate of thionine leaching, determined via SECM imaging. This enabled lactate determination at Eapp = 0.0 V vs Ag/AgCl over the range 0.25-5 mM in the presence of 1 mM NAD+.


Assuntos
Técnicas Biossensoriais , Catálise , Ácido Láctico/isolamento & purificação , L-Lactato Desidrogenase/química , Ácido Láctico/química , Microscopia Eletroquímica de Varredura , NAD/química , Oxirredução , Polímeros/química
17.
Zool Res ; 40(3): 211-218, 2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31006766

RESUMO

Accurate information on eye position in the orbit is available from visual feedback, efference copy of the oculomotor commands and proprioceptive signals from the extraocular muscles (EOM). Whereas visual feedback and oculomotor commands have been extensively studied, central processing of EOM proprioceptive signals remains to be elucidated. A challenge to the field is to develop an approach to induce passive eye movements without physically contacting the eyes. A novel method was developed to generate passive eye movements in rats. A small rare-earth magnet disk (0.7 mm diameter, 0.5 mm thickness) was attached to the surface of a rat's eyeball. A metal rod (5 mm diameter) wrapped with an electromagnetic (EM) coil was placed near the magnet (8-15 mm). By passing currents to the EM coil, electromagnetic force (EMF) was generated and acted upon the magnet and induced passive eye movements. The EMF induced well-defined passive eye movements, whose directions were dependent on current polarity and amplitudes and peak velocities were dependent on current intensity and duration. Peak velocities of the EMF-induced eye movements were linearly related to amplitudes, exhibiting main sequence relationships similar to that of saccades in awake rats and eye movements induced by electrical microstimulation of the abducens nucleus in anesthetized rats. Histological examination showed that repetitive EMF stimulations did not appear to result in damages in the EOM fibers. These results validated the EMF approach as a novel tool to investigate EOM proprioceptive signals and their roles in visual localization and gaze control.


Assuntos
Fenômenos Eletrofisiológicos , Movimentos Oculares/fisiologia , Animais , Campos Eletromagnéticos , Feminino , Propriocepção , Ratos , Ratos Long-Evans
18.
Anat Rec (Hoboken) ; 302(10): 1865-1885, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30993879

RESUMO

The organization of extraocular muscles (EOMs) and their motor nuclei was investigated in the mouse due to the increased importance of this model for oculomotor research. Mice showed a standard EOM organization pattern, although their eyes are set at the side of the head. They do have more prominent oblique muscles, whose insertion points differ from those of frontal-eyed species. Retrograde tracers revealed that the motoneuron layout aligns with the general vertebrate plan with respect to nuclei and laterality. The mouse departed in some significant respects from previously studied species. First, more overlap between the distributions of muscle-specific motoneuronal pools was present in the oculomotor nucleus (III). Furthermore, motoneuron dendrites for each pool filled the entire III and extended beyond the edge of the abducens nucleus (VI). This suggests mouse extraocular motoneuron afferents must target specific pools based on features other than dendritic distribution and nuclear borders. Second, abducens internuclear neurons are located outside the VI. We concluded this because no unlabeled abducens internuclear neurons were observed following lateral rectus muscle injections and because retrograde tracer injections into the III labeled cells immediately ventral and ventrolateral to the VI, not within it. This may provide an anatomical substrate for differential input to motoneurons and internuclear neurons that allows rodents to move their eyes more independently. Finally, while soma size measurements suggested motoneuron subpopulations supplying multiply and singly innervated muscle fibers are present, markers for neurofilaments and perineuronal nets indicated overlap in the size distributions of the two populations. Anat Rec, 302:1865-1885, 2019. © 2019 American Association for Anatomy.


Assuntos
Nervo Abducente/anatomia & histologia , Núcleo do Nervo Abducente/anatomia & histologia , Músculos Oculomotores/inervação , Nervo Oculomotor/anatomia & histologia , Complexo Nuclear Oculomotor/anatomia & histologia , Núcleo do Nervo Abducente/citologia , Animais , Feminino , Filamentos Intermediários , Masculino , Camundongos , Modelos Animais , Neurônios Motores/citologia , Neurônios Aferentes
19.
Invest Ophthalmol Vis Sci ; 59(3): 1486-1502, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625471

RESUMO

Purpose: These experiments were designed to reveal the location of the premotor neurons that have previously been designated physiologically as the midbrain near response cells controlling vergence, lens accommodation, and pupillary constriction in response to target distance. Methods: To identify this population, the fixed N2c strain of rabies virus was injected into the ciliary body of seven Macaca fascicularis monkeys. The virus was trans-synaptically transported to the brain. Following a 58- to 76-hour survival, animals were perfused with formalin fixative. After frozen sectioning, tissue was reacted to reveal the location of the infected populations by use of a monoclonal anti-rabies antibody. Another series of sections was processed to determine which of the rabies-positive cells were cholinergic motoneurons by use of an antibody to choline acetyl transferase. Results: At earlier time points, only cholinergic cells in the preganglionic Edinger-Westphal nucleus ipsilateral to the injection were labeled. At later time points, an additional population of noncholinergic, premotor cells was present. These were most numerous at the caudal end of the supraoculomotor area, where they formed a bilateral band, oriented mediolaterally immediately above the oculomotor nucleus. Rostral to this, a smaller bilateral population was located near the midline within the supraoculomotor area. Conclusions: Most lens preganglionic motoneurons are multipolar cells making up a continuous column within the Edinger-Westphal nucleus. A population of premotor cells that likely represents the midbrain near response cells is located in the supraoculomotor area. These cells are bilaterally distributed relative to the eye they control, and are most numerous caudally.


Assuntos
Mesencéfalo/anatomia & histologia , Córtex Motor/anatomia & histologia , Neurônios Motores/citologia , Complexo Nuclear Oculomotor/citologia , Animais , Macaca fascicularis , Vias Neurais/citologia
20.
Soc Work Health Care ; 56(10): 884-896, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28891780

RESUMO

BACKGROUND: The role of social work in free healthcare clinics and student-run clinics remains an understudied topic. METHOD: We conducted a literature review of the published studies through four online databases: Google Scholar, Social Work Abstracts, Academic Search Complete, and PsycInfo. RESULTS: The literature review revealed 449 possibly relevant studies, but only nine met the criteria for the final review. Based on these findings, social work is not fully utilized in free healthcare clinics and student-run clinics. CONCLUSION: Our literature review provides evidence for the need for social work in free healthcare clinics and student-run clinics.


Assuntos
Serviço Social , Clínica Dirigida por Estudantes , Humanos , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA