Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(6): 560, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767712

RESUMO

We have a poor understanding of how urban drainage and other engineered components interact with more natural hydrological processes in green and blue spaces to generate stream flow. This limits the scientific evidence base for predicting and mitigating the effects of future development of the built environment and climate change on urban water resources and their ecosystem services. Here, we synthesize > 20 years of environmental monitoring data to better understand the hydrological function of the 109-km2 Wuhle catchment, an important tributary of the river Spree in Berlin, Germany. More than half (56%) of the catchment is urbanized, leading to substantial flow path alterations. Young water from storm runoff and rapid subsurface flow provided around 20% of stream flow. However, most of it was generated by older groundwater (several years old), mainly recharged through the rural headwaters and non-urban green spaces. Recent drought years since 2018 showed that this base flow component has reduced in response to decreased recharge, causing deterioration in water quality and sections of the stream network to dry out. Attempts to integrate the understanding of engineered and natural processes in a traditional rainfall-runoff model were only partly successful due to uncertainties over the catchment area, effects of sustainable urban drainage, adjacent groundwater pumping, and limited conceptualization of groundwater storage dynamics. The study highlights the need for more extensive and coordinated monitoring and data collection in complex urban catchments and the use of these data in more advanced models of urban hydrology to enhance management.


Assuntos
Secas , Monitoramento Ambiental , Rios , Urbanização , Monitoramento Ambiental/métodos , Rios/química , Movimentos da Água , Água Subterrânea/química , Hidrologia , Modelos Teóricos , Alemanha , Mudança Climática
2.
Water Res ; 250: 121065, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159541

RESUMO

Urbanization and the persistent environmental changes present a major challenge for urban freshwaters and availability of water for humans and wildlife. In order to increase understanding of urban ecohydrology, we investigated the variability of planktonic bacteria and benthic diatoms - as two key biological indicators - coupled with insights from hydrochemistry and stable water isotopes across four urban streams characterized by different dominant water sources in Berlin, the German capital, over a period of one year (2021-2022). DNA metabarcoding results show that substantial spatio-temporal variability exists across urban streams in terms of microbial diversity and richness, with clear links to abiotic factors and nutrient concentrations. Bacterial communities showed clear distinction between effluent-impacted and non-effluent impacted streams as well as clear seasonal turnover. In-stream benthic diatom assemblages also showed robust seasonal variation as well as high species diversity. Our multiple-tracer approach is relevant for emerging questions regarding the increased use of treated effluent to supplement declining baseflows, the assessment of stream restoration projects and the impact of storm drainage and surface pollution on aquatic ecosystem health. eDNA analysis allows analysis of spatial and temporal patterns not feasibly studied with traditional analyses of macroinvertebrates. This can ultimately be leveraged for future water resource management and restoration planning and monitoring of urban freshwater systems across metropolitan areas.


Assuntos
DNA Ambiental , Diatomáceas , Humanos , Animais , Monitoramento Ambiental/métodos , Ecossistema , Água , Urbanização , Bactérias/genética , Rios/microbiologia , Invertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...