Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 196(3): 1570-1591, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37436543

RESUMO

In the current scenario, where environmental degradation, global climate change, and the depletion of petroleum feedstock pose significant challenges, the chemical industry seeks sustainable alternatives for manufacturing chemicals, fuels, and bioplastics. Biorefining processes that integrate biomass conversion and microbial fermentation have emerged as preferred approaches to create value-added compounds. However, commercializing biorefinery products is hindered by dilute concentrations of final products and the demand for high purity goods. To address these challenges, effective separation and recovery procedures are essential to minimize costs and equipment size. This article proposes a biorefinery route for the production of protocatechuic acid (PCA) by focusing on in situ PCA separation and purification from fermentation broth. PCA is a significant phenolic molecule with numerous applications in the pharmaceutical sector for its anti-inflammatory, antiapoptotic, and antioxidant properties, as well as in the food, polymer, and other chemical industries. The chemical approach is predominantly used to produce PCA due to the cost-prohibitive nature of natural extraction techniques. Reactive extraction, a promising technique known for its enhanced extraction efficiency, is identified as a viable strategy for recovering carboxylic acids compared to conventional methods. The extraction of PCA has been explored using various solvents, including natural and conventional solvents, such as aminic and organophosphorous extractants, as well as the potential utilization of ionic liquids as green solvents. Additionally, back extraction techniques like temperature swing and diluent composition swing can be employed for reactive extraction product recovery, facilitating the regeneration of the extractant from the organic phase. By addressing the challenges associated with PCA production and usage, particularly through reactive extraction, this proposed biorefinery route aims to contribute to a more sustainable and environmentally friendly chemical industry. The incorporation of PCA in the biorefinery process allows for the utilization of this valuable compound with diverse industrial applications, thus providing an additional incentive for the development and optimization of efficient separation techniques.


Assuntos
Hidroxibenzoatos , Regeneração , Solventes/química , Fermentação
2.
Environ Sci Pollut Res Int ; 30(10): 24919-24926, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35306654

RESUMO

Tetracyclines (TCs) antibiotics are very common and often used in both human and veterinary medicines. More than 75% of TCs are excreted in an active condition and released into the environment, posing a risk to the ecosystem and human health. Residual antibiotics are in global water bodies, causing antibiotic resistance and genotoxicity in humans and aquatic organisms. The ever-increasing number of multi-resistant bacteria caused by the widespread use of antibiotics in the environment has sparked a renewed interest in developing more sustainable antibiotic degradation processes. In this regard, photodegradation technique provides a promising solution to resolve this growing issue, paving the way for complete antibiotic degradation with the generation of non-toxic by-products. As a fascinating activity towards visible light range shown by semiconductor, graphitic carbon nitride (g-C3N4) has a medium bandgap, non-toxicity, chemically stable complex, and thermally great strength. Recent studies have concentrated on the performance of g-C3N4 as a photocatalyst for treating wastewater. Pure g-C3N4 exhibits limited photocatalytic activity due to insufficient sunlight usage, small surface area, and a high rate of recombination of electron and hole ([Formula: see text] & [Formula: see text]) pairs created in photocatalytic activity. Doping of g-C3N4 is a very effective method for improving the activity as element doped g-C3N4 shows excellent bandgap and electronic structure. Doping significantly broadens the light-responsive range and reduces recombination of e- & h+ pairs. Under above context, this review provides a systematic and comprehensive outlook of designing doped g-C3N4 as well as efficiency for TCs degradation in aquatic environment.


Assuntos
Antibacterianos , Ecossistema , Humanos , Fotólise , Antibacterianos/química , Catálise , Tetraciclinas
3.
Environ Sci Pollut Res Int ; 30(10): 24890-24898, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35102506

RESUMO

Levulinic acid is a carboxylic acid present in industrial downstream. It is an important chemical and can be transformed into various important chemicals such as 1,4-pentanediol, aminolevulinic acid, succinic acid, gamma valarolactone, hydoxyvaleric acid, and diphenolic acid. It is considered one of the top ten most important building block chemicals and bio-derived acids. Levulinic acid can be directly produced using biomass, chemical synthesis, and fermentation processes at industrial and laboratory scales. The biomass process produces the char, whereas the fermentation process generates waste during the production of levulinic acid, leading to an increase in the production cost and waste streams. The separation of levulinic acid from the waste is expensive and challenging. In the present study, reactive extraction was employed using trioctylamine in i-octanol for the separation of levulinic acid. The experimental results were expressed in terms of performance parameters like distribution coefficient (0.099-6.14), extraction efficiency (9-86%), loading ratio (0.09-0.7), and equilibrium complexation constant (11.34-1.05). The mass action law model was also applied and found the predicted values were in close agreement with the experimental results. The mixer settler extraction in series was used to achieve more than 98% separations of acid. Furthermore, the conceptual approach for separation of levulinic acid using a mixer settler reactor scheme was discussed and presented various design parameters including extraction efficiency, diffusion coefficient, equilibrium complexation constant, and loading ratio. The study is helpful in recovering the valuable chemicals present in industrial downstream and reducing their environmental impacts if any.


Assuntos
Ácidos Levulínicos , Fermentação
4.
Environ Sci Pollut Res Int ; 29(57): 86468-86484, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35710969

RESUMO

This paper reviews the improvement in the field of catalytic hydrogenation of 2-ethylanthraquinone to 2-ethylanthrahydroquinone for the successful production of hydrogen peroxide. Hydrogen peroxide is being used in almost all industrial areas, particularly in the chemical industry and in environmental protection, as the most promising oxidant for cleaner and environmentally safer processes. A variety of hydrogenation catalysts have been introduced for hydrogenation of 2-ethylanthraquinone in the production of hydrogen peroxide via anthraquinone (AQ) process. The aim of the present study is to describe the catalysts used in the hydrogenation of 2-ethylanthraquinone and the reaction mechanism involved with different catalytic systems. The hydrogenation of 2-ethylanthraquinone using metals, alloy, bimetallic composite, and supported metal catalyst with the structural modifications has been incorporated for the production of hydrogen peroxide. The comprehensive comparison reveals that the supported metal catalysts required lesser catalyst amount, produced lower AQ decay, and provided higher catalyst activity and selectivity. Furthermore, the replacement of conventional catalysts by metal and metal alloy-supported catalyst rises as a hydrogenation trend, enhancing by several times the catalytic performance.


Assuntos
Peróxido de Hidrogênio , Metais , Catálise , Hidrogenação , Metais/química , Antraquinonas , Ligas
5.
Chemosphere ; 188: 354-366, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28888861

RESUMO

The objective of present study is advancement of an efficient nanomaterial which was investigated to substantiate its efficiency, using kinetic studies to ensnare fluoride in order to make water potable. A new crystalline ZrAlCa nanohybrid adsorbent for fluoride removal was successfully synthesized by a co-precipitation method in this study. The prepared adsorbents were characterized by XRD, FT-IR, TGA, BET and FESEM and EDX. The adsorption properties of the developed adsorbent were studied using batch adsorption method which shown the noticeable fluoride removal efficiency up to 99% at near neutral pH as well as in acidic pH range. The reaction kinetics for adsorption of fluoride was established using reaction based kinetic models which fitted well with Avarami kinetic model as compared to pseudo-first-order, pseudo second-order and power function rate expression. The equilibrium isotherm modelling described adsorption process and Langmuir, Jovanovic, Temkin and Freundlich isotherms provides best fit to experimental data. The fluoride loaded adsorbent was efficiently regenerated by using an alkali solution and has no significant counter ion effect on fluoride adsorption efficiency. Interestingly, the developed nanomaterial has fluoride removal efficacy over varied concentration ranges. It has capability of reanimate and reuse the nanohybrid adsorbent makes it an attractive sustainable material.


Assuntos
Fluoretos/isolamento & purificação , Nanocompostos/química , Purificação da Água/métodos , Adsorção , Fluoretos/química , Concentração de Íons de Hidrogênio , Cinética , Porosidade , Termodinâmica , Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação
6.
Waste Manag ; 47(Pt A): 40-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26303650

RESUMO

Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and environmental sectors. This is important considering that the cleaner fuel like LPG is still not available in rural areas of many parts of the world.


Assuntos
Biocombustíveis/análise , Biomassa , Gerenciamento de Resíduos/métodos , Resíduos de Alimentos , Índia , Resíduos Sólidos/análise
7.
Environ Sci Pollut Res Int ; 23(10): 9284-94, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26139406

RESUMO

1-Butyl-3-methylimidazolium thiocyanate [BMIM]SCN has been presented on extractive desulfurization of liquid fuel. The FTIR, (1)H-NMR, and C-NMR have been discussed for the molecular confirmation of synthesized [BMIM]SCN. Further, thermal, conductivity, moisture content, viscosity, and solubility analyses of [BMIM]SCN were carried out. The effects of time, temperature, sulfur compounds, ultrasonication, and recycling of [BMIM]SCN on removal of dibenzothiophene from liquid fuel were also investigated. In extractive desulfurization, removal of dibenzothiophene in n-dodecane was 86.5 % for mass ratio of 1:1 in 30 min at 30 °C under the mild process conditions. [BMIM]SCN could be reused five times without a significant decrease in activity. Also, in the desulfurization of real fuels, multistage extraction was examined. The data and results provided in the present paper explore the significant insights of imidazolium-based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.


Assuntos
Imidazóis/síntese química , Enxofre/química , Tiocianatos/síntese química , Animais , Imidazóis/química , Líquidos Iônicos/química , Reciclagem , Solubilidade , Compostos de Enxofre/química , Temperatura , Tiocianatos/química , Tiofenos/química , Viscosidade
8.
ScientificWorldJournal ; 2013: 395274, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24307868

RESUMO

The possible application of imidazolium ionic liquids as energy-efficient green material for extractive deep desulfurization of liquid fuel has been investigated. 1-Butyl-3-methylimidazolium chloride [BMIM]Cl was synthesized by nucleophilic substitution reaction of n-methylimidazolium and 1-chlorobutane. Molecular structures of the ILs were confirmed by FTIR, (1)H-NMR, and (13)C-NMR. The thermal properties, conductivity, solubility, water content and viscosity analysis of [BMIM]Cl were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of IL without regeneration on dibenzothiophene removal of liquid fuel were presented. In the extractive desulfurization process, the removal of dibenzothiophene in n-dodecane using [BMIM]Cl was 81% with mass ratio of 1 : 1, in 30 min at 30°C under the mild reaction conditions. Also, desulfurization of real fuels with IL and multistage extraction were studied. The results of this work might offer significant insights in the perceptive use of imidazoled ILs as energy-efficient green material for extractive deep desulfurization of liquid fuels as it can be reused without regeneration with considerable extraction efficiency.


Assuntos
Engenharia Química/métodos , Óleos Combustíveis/análise , Química Verde/métodos , Imidazóis/química , Imidazóis/síntese química , Compostos de Enxofre/química , Butanos/química , Condutividade Elétrica , Espectroscopia de Ressonância Magnética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo , Viscosidade
9.
Waste Manag Res ; 30(9): 922-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22751850

RESUMO

'Red mud' or 'bauxite residue', a waste generated from alumina refinery is highly alkaline in nature with a pH of 10.5-12.5. Red mud poses serious environmental problems such as alkali seepage in ground water and alkaline dust generation. One of the options to make red mud less hazardous and environmentally benign is its neutralization with acid or an acidic waste. Hence, in the present study, neutralization of alkaline red mud was carried out using a highly acidic waste (pickling waste liquor). Pickling waste liquor is a mixture of strong acids used for descaling or cleaning the surfaces in steel making industry. The aim of the study was to look into the feasibility of neutralization process of the two wastes using Taguchi's design of experimental methodology. This would make both the wastes less hazardous and safe for disposal. The effect of slurry solids, volume of pickling liquor, stirring time and temperature on the neutralization process were investigated. The analysis of variance (ANOVA) shows that the volume of the pickling liquor is the most significant parameter followed by quantity of red mud with 69.18% and 18.48% contribution each respectively. Under the optimized parameters, pH value of 7 can be achieved by mixing the two wastes. About 25-30% of the total soda from the red mud is being neutralized and alkalinity is getting reduced by 80-85%. Mineralogy and morphology of the neutralized red mud have also been studied. The data presented will be useful in view of environmental concern of red mud disposal.


Assuntos
Óxido de Alumínio/química , Resíduos Industriais/prevenção & controle , Poluentes do Solo/análise , Gerenciamento de Resíduos/métodos , Óxido de Alumínio/análise , Análise de Variância , Concentração de Íons de Hidrogênio , Metalurgia , Microscopia Eletrônica de Varredura , Poluentes do Solo/química , Difração de Raios X
10.
Appl Biochem Biotechnol ; 167(2): 197-213, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22538984

RESUMO

Use of cheap, nontoxic, and selective solvents could economically provide a solution to the recovery of carboxylic acids produced by the bioroute. In this regard in the present paper, reactive extraction of citric acid was studied. Problems encompassing the recovery of the acid ([H(3)A](aq)(o) = 0.1-0.8) was solved by using tertiary amine (tri-n-octylamine, TOA) in natural diluents (rice bran oil, sunflower oil, soybean oil, and sesame oil). TOA was very effective in removal of acid providing distribution coefficient (D) as high as 18.51 (E% = 95%), 12.82 (E% = 93%), 15.09 (E% = 94%), and 16.28 (E% = 94%) when used with rice bran oil, sunflower oil, soybean oil, and sesame oil, respectively. Overall extraction constants and association numbers for TOA + rice bran oil, TOA + sunflower oil, TOA + soybean oil, and TOA + sesame oil were evaluated to be 35.48 (mol/l)(-1.46), 29.79 (mol/l)(-1.30), 33.79 (mol/l)(-1.51), and 37.64 (mol/l)(-1.65) and 1.46, 1.30, 1.51, and 1.65, respectively. Specific equilibrium complexation constants (K (E(n/m))) were also predicted using mathematical modeling.


Assuntos
Aminas/química , Ácido Cítrico/química , Óleos de Plantas/química , Óleo de Gergelim/química , Óleo de Soja/química , Cinética , Modelos Teóricos , Óleo de Farelo de Arroz , Soluções/química
11.
J Biotechnol ; 97(1): 59-68, 2002 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-12052683

RESUMO

Lactic acid is an important commercial product and extracting it out of aqueous solution is a growing requirement in fermentation based industries and recovery from waste streams. The design of an amine extraction process requires (i) equilibrium and (ii) kinetic data for the acid-amine (solvent) system used. Equilibria for lactic acid extraction by alamine 336 in methyl-iso-butyl-ketone (MIBK) as a diluent have been determined. The extent to which the organic phase (amine +MIBK) may be loaded with lactic acid is expressed as a loading ratio, z=[HL](o)/[B](i,o). Calculations based on the stoichiometry of the reactive extraction and the equilibria involved indicated that more lactic acid is transferred to the organic phase than would be expected from the (1:1) stoichiometry of the reaction. The extraction equilibrium was interpreted as a result of consecutive formation of two acid-amine species with stoichiometries of 1:1 and 2:1. Equilibrium complexation constant for (1:1) and (2:1) has been estimated. Kinetics of extraction of lactic acid by alamine 336 in MIBK has also been determined. In a first study of its kind, the theory of extraction accompanied by a chemical reaction has been used to obtain the kinetics of extraction of lactic acid by alamine 336 in MIBK. The reaction between lactic acid and alamine 336 in MIBK in a stirred cell falls in Regime 3, extraction accompanied by a fast chemical reaction occurring in the diffusion film. The reaction has been found to be zero order in alamine 336 and first order in lactic acid with a rate constant of 1.38 s(-1). These data will be useful in the design of extraction processes.


Assuntos
Aminas/farmacologia , Biotecnologia/métodos , Ácido Láctico/isolamento & purificação , Metil n-Butil Cetona/farmacologia , Solventes/farmacologia , Reatores Biológicos , Cinética , Ácido Láctico/química , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...