Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17479-17480, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858930

RESUMO

This erratum corrects errors that appear in Opt. Express31, 5042 (2023).10.1364/OE.480301.

2.
Atmos Meas Tech ; 16(17)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37961051

RESUMO

We present an open-path mid-infrared dual-comb spectroscopy (DCS) system capable of precise measurement of the stable water isotopologues H216O and HD16O. This system ran in a remote configuration at a rural test site for 3.75 months with 60% uptime and achieved a precision of < 2‰ on the normalized ratio of H216O and HD16O (δD) in 1000s. Here, we compare the δD values from the DCS system to those from the National Ecological Observatory Network (NEON) isotopologue point sensor network. Over the multi-month campaign, the mean difference between the DCS δD values and the NEON δD values from a similar ecosystem is < 2‰ with a standard deviation of 18‰, which demonstrates the inherent accuracy of DCS measurements over a variety of atmospheric conditions. We observe time-varying diurnal profiles and seasonal trends that are mostly correlated between the sites on daily timescales. This observation motivates the development of denser ecological monitoring networks aimed at understanding regional- and synoptic-scale water transport. Precise and accurate open-path measurements using DCS provide new capabilities for such networks.

3.
Opt Express ; 31(18): 29074-29084, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710714

RESUMO

Operation of any dual-comb spectrometer requires digitization of the interference signal before further processing. Nonlinearities in the analog-to-digital conversion can alter the apparent gas concentration by multiple percent, limiting both precision and accuracy of this technique. This work describes both the measurement of digitizer nonlinearity and the development of a model that quantitatively describes observed concentration bias over a range of conditions. We present hardware methods to suppress digitizer-induced bias of concentration retrievals below 0.1%.

4.
Opt Express ; 31(3): 5042-5055, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785456

RESUMO

Dual-comb spectroscopy measures greenhouse gas concentrations over kilometers of open air with high precision. However, the accuracy of these outdoor spectra is challenging to disentangle from the absorption model and the fluctuating, heterogenous concentrations over these paths. Relative to greenhouse gases, O2 concentrations are well-known and evenly mixed throughout the atmosphere. Assuming a constant O2 background, we can use O2 concentration measurements to evaluate the consistency of open-path dual-comb spectroscopy with laboratory-derived absorption models. To this end, we construct a dual-comb spectrometer spanning 1240 nm to 1700nm, which measures O2 absorption features in addition to CO2 and CH4. O2 concentration measurements across a 560 m round-trip outdoor path reach 0.1% precision in 10 minutes. Over seven days of shifting meteorology and spectrometer conditions, the measured O2 has -0.07% mean bias, and 90% of the measurements are within 0.4% of the expected hemisphere-average concentration. The excursions of up to 0.4% seem to track outdoor temperature and humidity, suggesting that accuracy may be limited by the O2 absorption model or by water interference. This simultaneous O2, CO2, and CH4 spectrometer will be useful for measuring accurate CO2 mole fractions over vertical or many-kilometer open-air paths, where the air density varies.

5.
Sci Adv ; 7(14)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33789900

RESUMO

Advances in spectroscopy have the potential to improve our understanding of agricultural processes and associated trace gas emissions. We implement field-deployed, open-path dual-comb spectroscopy (DCS) for precise multispecies emissions estimation from livestock. With broad atmospheric dual-comb spectra, we interrogate upwind and downwind paths from pens containing approximately 300 head of cattle, providing time-resolved concentration enhancements and fluxes of CH4, NH3, CO2, and H2O. The methane fluxes determined from DCS data and fluxes obtained with a colocated closed-path cavity ring-down spectroscopy gas analyzer agree to within 6%. The NH3 concentration retrievals have sensitivity of 10 parts per billion and yield corresponding NH3 fluxes with a statistical precision of 8% and low systematic uncertainty. Open-path DCS offers accurate multispecies agricultural gas flux quantification without external calibration and is easily extended to larger agricultural systems where point-sampling-based approaches are insufficient, presenting opportunities for field-scale biogeochemical studies and ecological monitoring.

6.
Appl Opt ; 58(11): 2809-2816, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31044881

RESUMO

We have developed short (6-10 cm), connectorized acetylene-filled photonic microcells (PMCs) from photonic bandgap fibers that may replace near-IR frequency references for certain applications based on gas-filled glass cells. By using a tapering technique to seal the microcells, we were able to achieve a high transmission efficiency of 80% and moderate line center accuracy of 10 MHz (1σ). This approaches the National Institute of Standard Technology Standard Reference Material 2517a 10 MHz (2σ) accuracy. Using an earlier Q-tipping technique, 37% off-resonant transmission and 5 MHz accuracy were achieved in finding the line center, but a large 13% etalon-like effect appears on the wings of the optical depth. The etalon-like effect is reduced to less than 1% by using the tapering method. In both cases, the microcells could be connectorized, albeit with a reduction in off-resonant transmission efficiency, for integration into multimode fibers or free-space optical systems. Although contamination is introduced during both fabrication techniques, the P13 PMC line center shifts are small with respect to the sub-Doppler line center. This shows that the PMC can be used for moderate-accuracy frequency measurements. Finally, repeatable measurements show that PMCs are stable in terms of total pressure over approximately one year.

7.
Opt Express ; 25(12): 13351-13358, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788872

RESUMO

We investigate the mid-IR laser beam characteristics from an acetylene-filled hollow-core optical fiber gas laser (HOFGLAS) system. The laser exhibits near-diffraction limited beam quality in the 3 µm region with M2 = 1.15 ± 0.02 measured at high pulse energy, and the highest mid-IR pulse energy from a HOFGLAS system of 1.4 µJ is reported. Furthermore, the effects of output saturation with pump pulse energy are reduced through the use of longer fibers with low loss. Finally, the slope efficiency is shown to be nearly independent of gas pressure over a wide range, which is encouraging for further output power increase.

8.
Appl Opt ; 55(34): 9810-9817, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27958475

RESUMO

Cr:forsterite laser-based frequency combs are useful for spectroscopic purposes in the near-IR wavelength region. However, self-referenced Cr:forsterite combs tend to exhibit wide carrier-envelope offset frequency (f0) linewidths, which result in broad comb teeth. This can be attributed to significant frequency noise across the comb's spectral bandwidth. We have stabilized a prism-based Cr:forsterite laser comb and observed narrowing of the f0 linewidth from ∼1.4 MHz down to ∼100 kHz by changing only the prism insertion, and to 23 kHz by inserting a knife edge into the intracavity beam while keeping the same prism insertion. The noise dynamics of the Cr:forsterite laser frequency comb are investigated with the goal of explaining this f0 narrowing phenomenon.

9.
Appl Opt ; 54(4): 746-50, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967783

RESUMO

Stretched-pulse operation of a mode-locked thulium/holmium-doped fiber laser has been demonstrated using a high numerical aperture (NA) fiber inside the laser cavity for intracavity dispersion compensation. The high NA fiber exhibits normal group-velocity dispersion allowing for the net-cavity dispersion to be positive. We experimentally investigate the laser dynamics as a function of the net-cavity dispersion, observing the transition from stretched-pulse to solitonic operation as the length of high NA fiber was reduced. In the stretched-pulse regime the laser produced pulses with a bandwidth of 30 nm and duration of 450 fs. Methods for compensating the third-order dispersion using high NA fibers are proposed.

10.
Opt Express ; 22(19): 23704-15, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321837

RESUMO

We have isolated a single tooth from a fiber laser-based optical frequency comb for nonlinear spectroscopy and thereby directly referenced the comb. An 89 MHz erbium fiber laser frequency comb is directly stabilized to the P(23) (1539.43 nm) overtone transition of (12)C(2)H(2) inside a hollow-core photonic crystal fiber. To do this, a single comb tooth is isolated and amplified from 20 nW to 40 mW with sufficient fidelity to perform saturated absorption spectroscopy. The fractional stability of the comb, ~7 nm away from the stabilized tooth, is shown to be 6 × 10(-12) at 100 ms gate time, which is over an order of magnitude better than that of a comb referenced to a GPS-disciplined Rb oscillator.


Assuntos
Érbio/química , Tecnologia de Fibra Óptica/instrumentação , Lasers de Estado Sólido , Luz , Fótons , Análise Espectral/métodos , Desenho de Equipamento
11.
Appl Opt ; 52(22): 5430-9, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913062

RESUMO

Gas-filled hollow optical fiber references based on the P(13) transition of the ν1+ν3 band of 12C2H2 promise portability with moderate accuracy and stability. Previous realizations are corrected (<1σ) by using proper modeling of a shift due to line-shape. To improve portability, a sealed photonic microcell is characterized on the 12C2H2 ν1+ν3 P(23) transition with somewhat reduced accuracy and stability. Effects of the photonic crystal fiber, including surface modes, are explored. Both polarization-maintaining (PM) and non-PM 7-cell photonic bandgap fiber are shown to be unsuitable for kilohertz-level frequency references.

12.
Appl Opt ; 51(27): 6465-70, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23033014

RESUMO

We have demonstrated a self-starting, passively mode-locked Tm/Ho codoped fiber laser that lases at one of two center wavelengths. An amplified 1.56 µm distributed feedback laser pumps a ring laser cavity which contains 1 m of Tm/Ho codoped silica fiber. Mode locking is obtained via nonlinear polarization rotation using a c-band polarization sensitive isolator with two polarization controllers. The laser is able to pulse separately at either 1.97 or 2.04 µm by altering the intracavity polarization during the initiation of mode locking. The codoped fiber permits pulsing at one of two wavelengths, where the shorter is due to the Tm(3+) emission and the longer due to the Ho(3+) emission. The laser produces a stable pulse train at 28.4 MHz with 25 mW average power, and a pulse duration of 966 fs with 9 nm bandwidth.


Assuntos
Lasers de Estado Sólido , Fibras Ópticas , Túlio/química , Desenho de Equipamento , Luz , Medições Luminescentes , Dióxido de Silício/química , Fatores de Tempo
13.
Opt Express ; 19(3): 2309-16, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369049

RESUMO

We demonstrate for the first time an optically pumped gas laser based on population inversion using a hollow core photonic crystal fiber (HC-PCF). The HC-PCF filled with 12C2H2 gas is pumped with ~5 ns pulses at 1.52 µm and lases at 3.12 µm and 3.16 µm in the mid-infrared spectral region. The maximum measured laser pulse energy of ~6 nJ was obtained at a gas pressure of 7 torr with a fiber with 20 dB/m loss near the lasing wavelengths. While the measured slope efficiencies of this prototype did not exceed a few percent due mainly to linear losses of the fiber at the laser wavelengths, 25% slope efficiency and pulse energies of a few mJ are the predicted limits of this laser. Simulations of the laser's behavior agree qualitatively with experimental observations.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Lasers , Cristalização , Desenho de Equipamento , Análise de Falha de Equipamento , Gases/química , Raios Infravermelhos , Fótons
14.
Appl Opt ; 48(36): 6980-9, 2009 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-20029601

RESUMO

The frequency comb from a prism-based Cr:forsterite laser has been frequency stabilized using intracavity prism insertion and pump power modulation. Absolute frequency measurements of a CW fiber laser stabilized to the P(13) transition of acetylene demonstrate a fractional instability of approximately 2 x 10(-11) at a 1 s gate time, limited by a commercial Global Positioning System (GPS)-disciplined rubidium oscillator. Additionally, absolute frequency measurements made simultaneously using a second frequency comb indicate relative instabilities of 3 x 10(-12) for both combs for a 1 s gate time. Estimations of the carrier-envelope offset frequency linewidth based on relative intensity noise and the response dynamics of the carrier-envelope offset to pump power changes confirm the observed linewidths.

15.
Opt Express ; 17(18): 16017-26, 2009 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-19724600

RESUMO

Saturated absorption spectroscopy reveals the narrowest features so far in molecular gas-filled hollow-core photonic crystal fiber. The 48-68 mum core diameter of the kagome-structured fiber used here allows for 8 MHz full-width half-maximum sub-Doppler features, and its wavelength-insensitive transmission is suitable for high-accuracy frequency measurements. A fiber laser is locked to the (12)C2H2 nu(1); + nu(3) P(13) transition inside kagome fiber, and compared with frequency combs based on both a carbon nanotube fiber laser and a Cr:forsterite laser, each of which are referenced to a GPS-disciplined Rb oscillator. The absolute frequency of the measured line center agrees with those measured in power build-up cavities to within 9.3 kHz (1 sigma error), and the fractional frequency instability is less than 1.2 x 10(-11) at 1 s averaging time.

16.
Opt Express ; 17(16): 14115-20, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19654821

RESUMO

A frequency comb generated by a 167 MHz repetition frequency erbium-doped fiber ring laser using a carbon nanotube saturable absorber is phase-stabilized for the first time. Measurements of the in-loop phase noise show an integrated phase error on the carrier envelope offset frequency of 0.35 radians. The carbon nanotube fiber laser comb is compared with a CW laser near 1533 nm stabilized to the nu(1) + nu(3) overtone transition in an acetylene-filled kagome photonic crystal fiber reference, while the CW laser is simultaneously compared to another frequency comb based on a Cr:Forsterite laser. These measurements demonstrate that the stability of a GPS-disciplined Rb clock is transferred to the comb, resulting in an upper limit on the locked comb's frequency instability of 1.2 x 10(-11) in 1 s, and a relative instability of <3 x 10(-12) in 1 s. The carbon nanotube laser frequency comb offers much promise as a robust and inexpensive all-fiber frequency comb with potential for scaling to higher repetition frequencies.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Filtração/instrumentação , Lasers , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Dispositivos Ópticos , Refratometria/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Modelos Teóricos , Nanotubos de Carbono/ultraestrutura , Espalhamento de Radiação
17.
Appl Opt ; 44(36): 7793-801, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16381529

RESUMO

Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of +/- 2 x 10(-8) (3sigma), with the wavelength accuracy limited to +/- 4 x 10(-8) by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than deltav/v approximately 3 x 10(-9), limited by temperature correction residuals.

18.
Opt Lett ; 29(3): 250-2, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14759041

RESUMO

A phase-locked frequency comb in the near infrared is demonstrated with a mode-locked, erbium-doped, fiber laser whose output is amplified and spectrally broadened in dispersion-flattened, highly nonlinear optical fiber to span from 1100 to >2200 nm. The supercontinuum output comprises a frequency comb with a spacing set by the laser repetition rate and an offset by the carrier-envelope offset frequency, which is detected with the standard f-to-2f heterodyne technique. The comb spacing and offset frequency are phase locked to a stable rf signal with a fiber stretcher in the laser cavity and by control of the pump laser power, respectively. This infrared comb permits frequency metrology experiments in the near infrared in a compact, fiber-laser-based system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...