Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(20): 13813-13832, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36251833

RESUMO

Cancers harboring homozygous deletion of the glycolytic enzyme enolase 1 (ENO1) are selectively vulnerable to inhibition of the paralogous isoform, enolase 2 (ENO2). A previous work described the sustained tumor regression activities of a substrate-competitive phosphonate inhibitor of ENO2, 1-hydroxy-2-oxopiperidin-3-yl phosphonate (HEX) (5), and its bis-pivaloyoxymethyl prodrug, POMHEX (6), in an ENO1-deleted intracranial orthotopic xenograft model of glioblastoma [Nature Metabolism 2020, 2, 1423-1426]. Due to poor pharmacokinetics of bis-ester prodrugs, this study was undertaken to identify potential non-esterase prodrugs for further development. Whereas phosphonoamidate esters were efficiently bioactivated in ENO1-deleted glioma cells, McGuigan prodrugs were not. Other strategies, including cycloSal and lipid prodrugs of 5, exhibited low micromolar IC50 values in ENO1-deleted glioma cells and improved stability in human serum over 6. The activity of select prodrugs was also probed using the NCI-60 cell line screen, supporting its use to examine the relationship between prodrugs and cell line-dependent bioactivation.


Assuntos
Glioblastoma , Glioma , Organofosfonatos , Pró-Fármacos , Humanos , Pró-Fármacos/uso terapêutico , Pró-Fármacos/farmacocinética , Organofosfonatos/farmacologia , Homozigoto , Deleção de Sequência , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Glioblastoma/tratamento farmacológico , Ésteres , Lipídeos , Proteínas de Ligação a DNA , Biomarcadores Tumorais , Proteínas Supressoras de Tumor/genética
2.
Cancer Metab ; 9(1): 27, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172075

RESUMO

BACKGROUND: Reprogramming of metabolic pathways is crucial to satisfy the bioenergetic and biosynthetic demands and maintain the redox status of rapidly proliferating cancer cells. In tumors, the tricarboxylic acid (TCA) cycle generates biosynthetic intermediates and must be replenished (anaplerosis), mainly from pyruvate and glutamine. We recently described a novel enolase inhibitor, HEX, and its pro-drug POMHEX. Since glycolysis inhibition would deprive the cell of a key source of pyruvate, we hypothesized that enolase inhibitors might inhibit anaplerosis and synergize with other inhibitors of anaplerosis, such as the glutaminase inhibitor, CB-839. METHODS: We analyzed polar metabolites in sensitive (ENO1-deleted) and resistant (ENO1-WT) glioma cells treated with enolase and glutaminase inhibitors. We investigated whether sensitivity to enolase inhibitors could be attenuated by exogenous anaplerotic metabolites. We also determined the synergy between enolase inhibitors and the glutaminase inhibitor CB-839 in glioma cells in vitro and in vivo in both intracranial and subcutaneous tumor models. RESULTS: Metabolomic profiling of ENO1-deleted glioma cells treated with the enolase inhibitor revealed a profound decrease in the TCA cycle metabolites with the toxicity reversible upon exogenous supplementation of supraphysiological levels of anaplerotic substrates, including pyruvate. ENO1-deleted cells also exhibited selective sensitivity to the glutaminase inhibitor CB-839, in a manner rescuable by supplementation of anaplerotic substrates or plasma-like media PlasmaxTM. In vitro, the interaction of these two drugs yielded a strong synergistic interaction but the antineoplastic effects of CB-839 as a single agent in ENO1-deleted xenograft tumors in vivo were modest in both intracranial orthotopic tumors, where the limited efficacy could be attributed to the blood-brain barrier (BBB), and subcutaneous xenografts, where BBB penetration is not an issue. This contrasts with the enolase inhibitor HEX, which, despite its negative charge, achieved antineoplastic effects in both intracranial and subcutaneous tumors. CONCLUSION: Together, these data suggest that at least for ENO1-deleted gliomas, tumors in vivo-unlike cells in culture-show limited dependence on glutaminolysis and instead primarily depend on glycolysis for anaplerosis. Our findings reinforce the previously reported metabolic idiosyncrasies of in vitro culture and suggest that cell culture media nutrient composition more faithful to the in vivo environment will more accurately predict in vivo efficacy of metabolism targeting drugs.

3.
ACS Med Chem Lett ; 11(7): 1484-1489, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32676158

RESUMO

Glycolysis inhibition remains aspirational in cancer therapy. We recently described a promising phosphonate inhibitor of enolase for cancers harboring homozygous deletions of ENO1. Here, we describe the application of a nitroheterocycle phosphonoamidate pro-drug pair to capitalize on tumor hypoxia. This bioreducible prodrug exhibits greater-than 2-fold potency under hypoxic conditions compared to normoxia and exhibits robust stability in biological fluids. Our work provides strong in vitro proof-of-concept for using bioreduction as a pro-drug delivery strategy in the context of enolase inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...