Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
HGG Adv ; 5(3): 100284, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38509709

RESUMO

Systematic determination of novel variant pathogenicity remains a major challenge, even when there is an established association between a gene and phenotype. Here we present Power Window (PW), a sliding window technique that identifies the impactful regions of a gene using population-scale clinico-genomic datasets. By sizing analysis windows on the number of variant carriers, rather than the number of variants or nucleotides, statistical power is held constant, enabling the localization of clinical phenotypes and removal of unassociated gene regions. The windows can be built by sliding across either the nucleotide sequence of the gene (through 1D space) or the positions of the amino acids in the folded protein (through 3D space). Using a training set of 350k exomes from the UK Biobank (UKB), we developed PW models for well-established gene-disease associations and tested their accuracy in two independent cohorts (117k UKB exomes and 65k exomes sequenced at Helix in the Healthy Nevada Project, myGenetics, or In Our DNA SC studies). The significant models retained a median of 49% of the qualifying variant carriers in each gene (range 2%-98%), with quantitative traits showing a median effect size improvement of 66% compared with aggregating variants across the entire gene, and binary traits' odds ratios improving by a median of 2.2-fold. PW showcases that electronic health record-based statistical analyses can accurately distinguish between novel coding variants in established genes that will have high phenotypic penetrance and those that will not, unlocking new potential for human genomics research, drug development, variant interpretation, and precision medicine.

2.
Clin Infect Dis ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170452

RESUMO

Within a multi-state clinical cohort, SARS-CoV-2 antiviral prescribing patterns were evaluated from April 2022-June 2023 among non-hospitalized SARS-CoV-2-infected patients with risk factors for severe COVID-19. Among 3,247 adults, only 31.9% were prescribed an antiviral agent (87.6% nirmatrelvir/ritonavir, 11.9% molnupiravir, 0.5% remdesivir), highlighting the need to identify and address treatment barriers.

3.
Genet Med ; 25(4): 100012, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36637017

RESUMO

PURPOSE: TTN truncating variants (TTNtvs) represent the largest known genetic cause of dilated cardiomyopathies (DCMs), however their penetrance for DCM in general populations is low. More broadly, patients with cardiomyopathies (CMs) often exhibit other cardiac conditions, such as atrial fibrillation (Afib), which has also been linked to TTNtvs. This retrospective analysis aims to characterize the relationship between different cardiac conditions in those with TTNtvs and identify individuals with the highest risk of DCM. METHODS: In this work we leverage longitudinal electronic health record and exome sequencing data from approximately 450,000 individuals in 2 health systems to statistically confirm and pinpoint the genetic footprint of TTNtv-related diagnoses aside from CM, such as Afib, and determine whether vetting additional significantly associated phenotypes better stratifies CM risk across those with TTNtvs. We focused on TTNtvs in exons with a percentage spliced in >90% (hiPSI TTNtvs), a representation of constitutive cardiac expression. RESULTS: When controlling for CM and Afib, other cardiac conditions retained only nominal association with TTNtvs. A sliding window analysis of TTNtvs across the locus confirms that the association is specific to hiPSI exons for both CM and Afib, with no meaningful associations in percent spliced in ≤90% exons (loPSI TTNtvs). The combination of hiPSI TTNtv status and early Afib diagnosis (before age 60) found a subset of TTNtv individuals at high risk for CM. The prevalence of CM in this subset was 33%, a rate that was 3.5 fold higher than that in individuals with hiPSI TTNtvs (9% prevalence), 5-fold higher than that in individuals without TTNtvs with early Afib (6% prevalence), and 80-fold higher than that in the general population. CONCLUSION: Our retrospective analyses revealed that those with hiPSI TTNtvs and early Afib (∼1/2900) have a high prevalence of CM (33%), far exceeding that in other individuals with TTNtvs and in those without TTNtvs with an early Afib diagnosis. These results show that combining phenotypic information along with genomic population screening can identify patients at higher risk for progressing to symptomatic heart failure.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Cardiomiopatia Dilatada , Cardiopatias , Humanos , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/genética , Estudos Retrospectivos , Prevalência , Cardiomiopatias/epidemiologia , Cardiomiopatias/genética , Conectina/genética , Conectina/metabolismo , Cardiomiopatia Dilatada/epidemiologia , Cardiomiopatia Dilatada/genética
4.
Med ; 3(12): 848-859.e4, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36332633

RESUMO

BACKGROUND: Between November 2021 and February 2022, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants co-circulated in the United States, allowing for co-infections and possible recombination events. METHODS: We sequenced 29,719 positive samples during this period and analyzed the presence and fraction of reads supporting mutations specific to either the Delta or Omicron variant. FINDINGS: We identified 18 co-infections, one of which displayed evidence of a low Delta-Omicron recombinant viral population. We also identified two independent cases of infection by a Delta-Omicron recombinant virus, where 100% of the viral RNA came from one clonal recombinant. In the three cases, the 5' end of the viral genome was from the Delta genome and the 3' end from Omicron, including the majority of the spike protein gene, though the breakpoints were different. CONCLUSIONS: Delta-Omicron recombinant viruses were rare, and there is currently no evidence that Delta-Omicron recombinant viruses are more transmissible between hosts compared with the circulating Omicron lineages. FUNDING: This research was supported by the NIH RADx initiative and by the Centers for Disease Control Contract 75D30121C12730 (Helix).


Assuntos
COVID-19 , Coinfecção , Orthopoxvirus , Humanos , SARS-CoV-2/genética , Genoma Viral/genética
5.
Cell Rep Med ; 3(3): 100564, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35474739

RESUMO

We report on the sequencing of 74,348 SARS-CoV-2 positive samples collected across the United States and show that the Delta variant, first detected in the United States in March 2021, made up the majority of SARS-CoV-2 infections by July 1, 2021 and accounted for >99.9% of the infections by September 2021. Not only did Delta displace variant Alpha, which was the dominant variant at the time, it also displaced the Gamma, Iota, and Mu variants. Through an analysis of quantification cycle (Cq) values, we demonstrate that Delta infections tend to have a 1.7× higher viral load compared to Alpha infections (a decrease of 0.8 Cq) on average. Our results are consistent with the hypothesis that the increased transmissibility of the Delta variant could be due to the ability of the Delta variant to establish a higher viral load earlier in the infection as compared to the Alpha variant.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , SARS-CoV-2/genética , Estados Unidos/epidemiologia , Carga Viral/genética
6.
HGG Adv ; 3(2): 100084, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35005651

RESUMO

COVID-19 vaccines are safe and highly effective, but some individuals experience unpleasant reactions to vaccination. As the majority of adults in the United States have received a COVID-19 vaccine this year, there is an unprecedented opportunity to study the genetics of reactions to vaccination via surveys of individuals who are already part of genetic research studies. Here, we have queried 17,440 participants in the Helix DNA Discovery Project and Healthy Nevada Project about their reactions to COVID-19 vaccination. Our genome-wide association study identifies an association between severe difficulties with daily routine after vaccination and HLA-A∗03:01. This association was statistically significant only for those who received the Pfizer-BioNTech vaccine (BNT162b2; n = 3,694; p = 4.70E-11; OR = 2.07 [95% CI 1.67-2.56]), and showed a smaller effect size in those who received the Moderna vaccine (mRNA-1273; n = 3,610; p = 0.005; OR = 1.32 [95% CI 1.09-1.59]). In Pfizer-BioNTech recipients, HLA-A∗03:01 was associated with a 2-fold increase in risk of self-reported severe difficulties with daily routine following vaccination. The effect was consistent across ages, sexes, and whether the person had previously had a COVID-19 infection. The reactions experienced by HLA-A∗03:01 carriers were driven by associations with chills, fever, fatigue, and generally feeling unwell.

7.
Genet Med ; 23(12): 2300-2308, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385667

RESUMO

PURPOSE: To identify conditions that are candidates for population genetic screening based on population prevalence, penetrance of rare variants, and actionability. METHODS: We analyzed exome and medical record data from >220,000 participants across two large population health cohorts with different demographics. We performed a gene-based collapsing analysis of rare variants to identify genes significantly associated with disease status. RESULTS: We identify 74 statistically significant gene-disease associations across 27 genes. Seven of these conditions have a positive predictive value (PPV) of at least 30% in both cohorts. Three are already used in population screening programs (BRCA1, BRCA2, LDLR), and we also identify four new candidates for population screening: GCK with diabetes mellitus, HBB with ß-thalassemia minor and intermedia, PKD1 with cystic kidney disease, and MIP with cataracts. Importantly, the associations are actionable in that early genetic screening of each of these conditions is expected to improve outcomes. CONCLUSION: We identify seven genetic conditions where rare variation appears appropriate to assess in population screening, four of which are not yet used in screening programs. The addition of GCK, HBB, PKD1, and MIP rare variants into genetic screening programs would reach an additional 0.21% of participants with actionable disease risk, depending on the population.


Assuntos
Genes BRCA2 , Testes Genéticos , Exoma , Predisposição Genética para Doença , Humanos , Valor Preditivo dos Testes , Sequenciamento do Exoma
8.
PLoS One ; 16(8): e0255402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34379666

RESUMO

Epidemiological and genetic studies on COVID-19 are currently hindered by inconsistent and limited testing policies to confirm SARS-CoV-2 infection. Recently, it was shown that it is possible to predict COVID-19 cases using cross-sectional self-reported disease-related symptoms. Here, we demonstrate that this COVID-19 prediction model has reasonable and consistent performance across multiple independent cohorts and that our attempt to improve upon this model did not result in improved predictions. Using the existing COVID-19 prediction model, we then conducted a GWAS on the predicted phenotype using a total of 1,865 predicted cases and 29,174 controls. While we did not find any common, large-effect variants that reached genome-wide significance, we do observe suggestive genetic associations at two SNPs (rs11844522, p = 1.9x10-7; rs5798227, p = 2.2x10-7). Explorative analyses furthermore suggest that genetic variants associated with other viral infectious diseases do not overlap with COVID-19 susceptibility and that severity of COVID-19 may have a different genetic architecture compared to COVID-19 susceptibility. This study represents a first effort that uses a symptom-based predicted phenotype as a proxy for COVID-19 in our pursuit of understanding the genetic susceptibility of the disease. We conclude that the inclusion of symptom-based predicted cases could be a useful strategy in a scenario of limited testing, either during the current COVID-19 pandemic or any future viral outbreak.


Assuntos
COVID-19/patologia , Predisposição Genética para Doença , Área Sob a Curva , COVID-19/genética , COVID-19/virologia , Estudos Transversais , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Curva ROC , SARS-CoV-2/isolamento & purificação
9.
Clin Pharmacol Ther ; 110(3): 759-767, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33930192

RESUMO

Genomic-guided pharmaceutical prescribing is increasingly recognized as an important clinical application of genetics. Accurate genotyping of pharmacogenomic (PGx) genes can be difficult, owing to their complex genetic architecture involving combinations of single-nucleotide polymorphisms and structural variation. Here, we introduce the Helix PGx database, an open-source star allele, genotype, and resulting metabolic phenotype frequency database for CYP2C9, CYP2C19, CYP2D6, and CYP4F2, based on short-read sequencing of >86,000 unrelated individuals enrolled in the Helix DNA Discovery Project. The database is annotated using a pipeline that is clinically validated against a broad range of alleles and designed to call CYP2D6 structural variants with high (98%) accuracy. We find that CYP2D6 has greater allelic diversity than the other genes, manifest in both a long tail of low-frequency star alleles, as well as a disproportionate fraction (36%) of all novel predicted loss-of-function variants identified. Across genes, we observe that many rare alleles (<0.1% frequency) in the overall cohort have 10 times higher frequency in one or more subgroups with non-European genetic ancestry. Extending these PGx genotypes to predicted metabolic phenotypes, we demonstrate that >90% of the cohort harbors a high-risk variant in one of the four pharmacogenes. Based on the recorded prescriptions for >30,000 individuals in the Healthy Nevada Project, combined with predicted PGx metabolic phenotypes, we anticipate that standard-of-care screening of these 4 pharmacogenes could impact nearly half of the general population.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , DNA/genética , Frequência do Gene/genética , Alelos , Bases de Dados de Ácidos Nucleicos , Genômica/métodos , Genótipo , Humanos , Farmacogenética/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
10.
Cell ; 184(10): 2587-2594.e7, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33861950

RESUMO

The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (US), tracking it back to its early emergence. We found that, while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40%-50%. We revealed several independent introductions of B.1.1.7 into the US as early as late November 2020, with community transmission spreading it to most states within months. We show that the US is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.


Assuntos
COVID-19 , Modelos Biológicos , SARS-CoV-2 , COVID-19/genética , COVID-19/mortalidade , COVID-19/transmissão , Feminino , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Estados Unidos/epidemiologia
11.
Front Genet ; 12: 639418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763119

RESUMO

Clinical conditions correlated with elevated triglyceride levels are well-known: coronary heart disease, hypertension, and diabetes. Underlying genetic and phenotypic mechanisms are not fully understood, partially due to lack of coordinated genotypic-phenotypic data. Here we use a subset of the Healthy Nevada Project, a population of 9,183 sequenced participants with longitudinal electronic health records to examine consequences of altered triglyceride levels. Specifically, Healthy Nevada Project participants sequenced by the Helix Exome+ platform were cross-referenced to their electronic medical records to identify: (1) rare and common single-variant genome-wide associations; (2) gene-based associations using a Sequence Kernel Association Test; (3) phenome-wide associations with triglyceride levels; and (4) pleiotropic variants linked to triglyceride levels. The study identified 549 significant single-variant associations (p < 8.75 × 10-9), many in chromosome 11's triglyceride hotspot: ZPR1, BUD13, APOC3, APOA5. A well-known protective loss-of-function variant in APOC3 (R19X) was associated with a 51% decrease in triglyceride levels in the cohort. Sixteen gene-based triglyceride associations were identified; six of these genes surprisingly did not include a single variant with significant associations. Results at the variant and gene level were validated with the UK Biobank. The combination of a single-variant genome-wide association, a gene-based association method, and phenome wide-association studies identified rare and common variants, genes, and phenotypes associated with elevated triglyceride levels, some of which may have been overlooked with standard approaches.

12.
medRxiv ; 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33564780

RESUMO

As of January of 2021, the highly transmissible B.1.1.7 variant of SARS-CoV-2, which was first identified in the United Kingdom (U.K.), has gained a strong foothold across the world. Because of the sudden and rapid rise of B.1.1.7, we investigated the prevalence and growth dynamics of this variant in the United States (U.S.), tracking it back to its early emergence and onward local transmission. We found that the RT-qPCR testing anomaly of S gene target failure (SGTF), first observed in the U.K., was a reliable proxy for B.1.1.7 detection. We sequenced 212 B.1.1.7 SARS-CoV-2 genomes collected from testing facilities in the U.S. from December 2020 to January 2021. We found that while the fraction of B.1.1.7 among SGTF samples varied by state, detection of the variant increased at a logistic rate similar to those observed elsewhere, with a doubling rate of a little over a week and an increased transmission rate of 35-45%. By performing time-aware Bayesian phylodynamic analyses, we revealed several independent introductions of B.1.1.7 into the U.S. as early as late November 2020, with onward community transmission enabling the variant to spread to at least 30 states as of January 2021. Our study shows that the U.S. is on a similar trajectory as other countries where B.1.1.7 rapidly became the dominant SARS-CoV-2 variant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.

13.
Nat Metab ; 2(10): 1126-1134, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33046911

RESUMO

Genome-wide association studies have identified 240 independent loci associated with type 2 diabetes (T2D) risk, but this knowledge has not advanced precision medicine. In contrast, the genetic diagnosis of monogenic forms of diabetes (including maturity-onset diabetes of the young (MODY)) are textbook cases of genomic medicine. Recent studies trying to bridge the gap between monogenic diabetes and T2D have been inconclusive. Here, we show a significant burden of pathogenic variants in genes linked with monogenic diabetes among people with common T2D, particularly in actionable MODY genes, thus implying that there should be a substantial change in care for carriers with T2D. We show that, among 74,629 individuals, this burden is probably driven by the pathogenic variants found in GCK, and to a lesser extent in HNF4A, KCNJ11, HNF1B and ABCC8. The carriers with T2D are leaner, which evidences a functional metabolic effect of these mutations. Pathogenic variants in actionable MODY genes are more frequent than was previously expected in common T2D. These results open avenues for future interventions assessing the clinical interest of these pathogenic mutations in precision medicine.


Assuntos
Diabetes Mellitus Tipo 2/genética , Biologia Computacional , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Quinases do Centro Germinativo/genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
14.
Nat Commun ; 11(1): 542, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992710

RESUMO

Understanding the impact of rare variants is essential to understanding human health. We analyze rare (MAF < 0.1%) variants against 4264 phenotypes in 49,960 exome-sequenced individuals from the UK Biobank and 1934 phenotypes (1821 overlapping with UK Biobank) in 21,866 members of the Healthy Nevada Project (HNP) cohort who underwent Exome + sequencing at Helix. After using our rare-variant-tailored methodology to reduce test statistic inflation, we identify 64 statistically significant gene-based associations in our meta-analysis of the two cohorts and 37 for phenotypes available in only one cohort. Singletons make significant contributions to our results, and the vast majority of the associations could not have been identified with a genotyping chip. Our results are available for interactive browsing in a webapp (https://ukb.research.helix.com). This comprehensive analysis illustrates the biological value of large, deeply phenotyped cohorts of unselected populations coupled with NGS data.


Assuntos
Exoma/genética , Variação Genética , Genoma Humano , Estudo de Associação Genômica Ampla , Fenótipo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Bases de Dados Genéticas , Europa (Continente) , Feminino , Genética Populacional/estatística & dados numéricos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Software , Sequenciamento do Exoma , Adulto Jovem
15.
J Genet Couns ; 28(2): 456-465, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964579

RESUMO

The practice of genetic counseling is going to be impacted by the public's expectation that goods, services, information, and experiences happen on demand, wherever and whenever people want them. Building from trends that are currently taking shape, this article looks just over a decade into the future-to 2030-to provide a description of how the field of genetics and genetic counseling will be changed, as well as advice for genetic counselors for how to prepare. We build from the prediction that a large portion of the general public will have access to their digitized whole genome sequence anytime, any place, on any device. We focus on five topics downstream of this prediction: public health, personal autonomy, polygenic scores (PGS), evolving clinical practices, and genetic privacy.


Assuntos
Aconselhamento Genético/tendências , Saúde Pública/tendências , Feminino , Aconselhamento Genético/ética , Humanos , Saúde Pública/ética
16.
Am J Hum Genet ; 99(3): 595-606, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569544

RESUMO

The interpretation of non-coding variants still constitutes a major challenge in the application of whole-genome sequencing in Mendelian disease, especially for single-nucleotide and other small non-coding variants. Here we present Genomiser, an analysis framework that is able not only to score the relevance of variation in the non-coding genome, but also to associate regulatory variants to specific Mendelian diseases. Genomiser scores variants through either existing methods such as CADD or a bespoke machine learning method and combines these with allele frequency, regulatory sequences, chromosomal topological domains, and phenotypic relevance to discover variants associated to specific Mendelian disorders. Overall, Genomiser is able to identify causal regulatory variants as the top candidate in 77% of simulated whole genomes, allowing effective detection and discovery of regulatory variants in Mendelian disease.


Assuntos
Algoritmos , Doenças Genéticas Inatas/genética , Genoma Humano/genética , Mutação/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Aprendizado de Máquina , Fases de Leitura Aberta/genética , Fenótipo , Mutação Puntual/genética
17.
Genetics ; 203(4): 1491-5, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27516611

RESUMO

The principles of genetics apply across the entire tree of life. At the cellular level we share biological mechanisms with species from which we diverged millions, even billions of years ago. We can exploit this common ancestry to learn about health and disease, by analyzing DNA and protein sequences, but also through the observable outcomes of genetic differences, i.e. phenotypes. To solve challenging disease problems we need to unify the heterogeneous data that relates genomics to disease traits. Without a big-picture view of phenotypic data, many questions in genetics are difficult or impossible to answer. The Monarch Initiative (https://monarchinitiative.org) provides tools for genotype-phenotype analysis, genomic diagnostics, and precision medicine across broad areas of disease.


Assuntos
Biologia Computacional , Estudos de Associação Genética , Genômica , Medicina de Precisão , Bases de Dados Genéticas , Humanos , Análise de Sequência de DNA , Análise de Sequência de Proteína
18.
Genet Med ; 18(6): 608-17, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26562225

RESUMO

PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. METHODS: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease-gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein-protein association neighbors. RESULTS: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease-gene associations and ranked the correct seeded variant in up to 87% when detectable disease-gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. CONCLUSION: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders.Genet Med 18 6, 608-617.


Assuntos
Sequenciamento do Exoma/métodos , Exoma/genética , Doenças Raras/genética , Doenças Raras/fisiopatologia , Animais , Biologia Computacional , Bases de Dados Genéticas , Modelos Animais de Doenças , Estudos de Associação Genética , Variação Genética , Humanos , Camundongos , National Institutes of Health (U.S.) , Pacientes , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/epidemiologia , Estados Unidos , Peixe-Zebra
19.
Nat Protoc ; 10(12): 2004-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26562621

RESUMO

Exomiser is an application that prioritizes genes and variants in next-generation sequencing (NGS) projects for novel disease-gene discovery or differential diagnostics of Mendelian disease. Exomiser comprises a suite of algorithms for prioritizing exome sequences using random-walk analysis of protein interaction networks, clinical relevance and cross-species phenotype comparisons, as well as a wide range of other computational filters for variant frequency, predicted pathogenicity and pedigree analysis. In this protocol, we provide a detailed explanation of how to install Exomiser and use it to prioritize exome sequences in a number of scenarios. Exomiser requires ∼3 GB of RAM and roughly 15-90 s of computing time on a standard desktop computer to analyze a variant call format (VCF) file. Exomiser is freely available for academic use from http://www.sanger.ac.uk/science/tools/exomiser.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Testes Genéticos/métodos , Humanos , Análise de Sequência de DNA/métodos , Software
20.
Hum Mutat ; 36(10): 931-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26251998

RESUMO

The discovery of disease-causing mutations typically requires confirmation of the variant or gene in multiple unrelated individuals, and a large number of rare genetic diseases remain unsolved due to difficulty identifying second families. To enable the secure sharing of case records by clinicians and rare disease scientists, we have developed the PhenomeCentral portal (https://phenomecentral.org). Each record includes a phenotypic description and relevant genetic information (exome or candidate genes). PhenomeCentral identifies similar patients in the database based on semantic similarity between clinical features, automatically prioritized genes from whole-exome data, and candidate genes entered by the users, enabling both hypothesis-free and hypothesis-driven matchmaking. Users can then contact other submitters to follow up on promising matches. PhenomeCentral incorporates data for over 1,000 patients with rare genetic diseases, contributed by the FORGE and Care4Rare Canada projects, the US NIH Undiagnosed Diseases Program, the EU Neuromics and ANDDIrare projects, as well as numerous independent clinicians and scientists. Though the majority of these records have associated exome data, most lack a molecular diagnosis. PhenomeCentral has already been used to identify causative mutations for several patients, and its ability to find matching patients and diagnose these diseases will grow with each additional patient that is entered.


Assuntos
Predisposição Genética para Doença/genética , Disseminação de Informação/métodos , Doenças Raras/genética , Bases de Dados Genéticas , Variação Genética , Genótipo , Humanos , Fenótipo , Software , Interface Usuário-Computador , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...