Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9147, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904111

RESUMO

Research in functional magnetic materials often employs thin films as model systems for finding new chemical compositions with promising properties. However, the scale-up of thin films towards bulk-like structures is challenging, since the material synthesis conditions are entirely different for thin films and e.g. rapid quenching methods. As one of the consequences, the type and degree of order in thin films and melt-spun ribbons are usually different, leading to different magnetic properties. In this work, using the example of magnetocaloric Ni-Co-Mn-Al melt-spun ribbons and thin films, we show that the excellent functional properties of the films can be reproduced also in ribbons, if an appropriate heat treatment is applied, that installs the right degree of order in the ribbons. We show that some chemical disorder is needed to get a pronounced and sharp martensitic transition. Increasing the order with annealing improves the magnetic properties only up to a point where selected types of disorder survive, which in turn compromise the magnetic properties. These findings allow us to understand the impact of the type and degree of disorder on the functional properties, paving the way for a faster transfer of combinatorial thin film research towards bulk-like materials for magnetic Heusler alloys.

2.
Chem Commun (Camb) ; 53(56): 7901-7904, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28656179

RESUMO

The Dy-Sc nitride clusterfullerene Dy2ScN@C80-Ih exhibits slow relaxation of magnetization up to 76 K. Above 60 K, thermally-activated relaxation proceeds via the fifth-excited Kramers doublet with the energy of 1735 ± 21 K, which is the highest barrier ever reported for dinuclear lanthanide single molecule magnets.

3.
Phys Rev Lett ; 98(2): 027201, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17358641

RESUMO

We present experimental results for the thermal conductivity kappa of the pseudo-two-leg ladder material CaCu2O3. The strong buckling of the ladder rungs renders this material a good approximation to a S=1/2 Heisenberg chain. Despite a strong suppression of the thermal conductivity of this material in all crystal directions due to inherent disorder, we find a dominant magnetic contribution kappa mag along the chain direction. kappa mag is linear in temperature, resembling the low-temperature limit of the thermal Drude weight D th of the S=1/2 Heisenberg chain. The comparison of kappamag and Dth yields a magnetic mean-free path of l mag approximately 22+/-5 A, in good agreement with magnetic measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA