Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 185, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670014

RESUMO

As we continue to develop metal-organic frameworks (MOFs) for potential industrial applications, it becomes increasingly imperative to understand their mechanical stability. Notably, amongst flexible MOFs, structure-property relationships regarding their compressibility under pressure remain unclear. In this work, we conducted in situ variable pressure powder X-ray diffraction (PXRD) measurements up to moderate pressures (<1 GPa) using a synchrotron source on two families of flexible MOFs: (i) NU-1400 and NU-1401, and (ii) MIL-88B, MIL-88B-(CH3)2, and MIL-88B-(CH3)4. In this project scope, we found a positive correlation between bulk moduli and degree of flexibility, where increased rigidity (e.g., smaller swelling or breathing amplitude) arising from steric hindrance was deleterious, and observed reversibility in the unit cell compression of these MOFs. This study serves as a primer for the community to begin to untangle the factors that engender flexible frameworks with mechanical resilience.

2.
ACS Appl Mater Interfaces ; 14(47): 52886-52893, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395424

RESUMO

To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic Ce12V6-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15. The 51V magic angle spinning solid-state nuclear magnetic resonance (51V MAS NMR) spectroscopy and differential pair distribution function (dPDF) analysis confirmed the structural integrity of the CeV cluster inside the SBA-15. The composite was then benchmarked for liquid-phase oxidation of 2-chloroethyl ethyl sulfide (CEES) under mild conditions and gas-phase oxidative dehydrogenation (ODH) of propane under high temperatures (up to 550 °C). The catalytic reactivity results demonstrated 8- and 14-fold increase in turnover frequency (TOF) values of the composite (CeV@10SBA-2) than the bulk CeV cluster under the same conditions for CEES oxidation and ODH, respectively. These results highlight the improved reactivity of the catalytically active CeV cluster as attributed to the higher dispersion of the discrete cluster upon immobilization within the SBA-15 support.

3.
J Am Chem Soc ; 144(27): 12092-12101, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35786950

RESUMO

Ceria-based materials have been highly desired in photocatalytic reactions due to their redox properties and strong oxygen storage and transfer ability. Herein, we report the structures of one CeCe70 oxysulfate cluster and four MCe70 clusters (M = Cu, Ni, Co, and Fe) with the same Ce70 core. As noted, single-crystal X-ray diffraction confirmed the structures of CeCe70 and the MCe70 series, while Raman spectroscopy indicated an increase in oxygen defects upon the introduction of Cu and Fe ions. The clusters catalyzed the oxidation of 4-methoxybenzyl alcohol under ultraviolet light. CuCe70 and FeCe70 exhibited enhanced reactivity compared to CeCe70 and improved aldehyde selectivity compared to control experiments. In comparison with their homogeneous congeners, the CeCe70/MCe70 clusters altered the location of radical generation from the bulk solution to the clusters' surfaces. Mechanistic studies highlight the role of oxygen defects and specific transition metal introduction for efficient photocatalysis. The mechanistic pathway in this study provides insight into how to select or design a highly selective catalyst for photocatalysis.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35834365

RESUMO

Atomically precise cerium oxo clusters offer a platform to investigate structure-property relationships that are much more complex in the ill-defined bulk material cerium dioxide. We investigated the activity of the MCe70 torus family (M = Cd, Ce, Co, Cu, Fe, Ni, and Zn), a family of discrete oxysulfate-based Ce70 rings linked by monomeric cation units, for CO oxidation. CuCe70 emerged as the best performing MCe70 catalyst among those tested, prompting our exploration of the role of the interfacial unit on catalytic activity. Temperature-programmed reduction (TPR) studies of the catalysts indicated a lower temperature reduction in CuCe70 as compared to CeCe70. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicated that CuCe70 exhibited a faster formation of Ce3+ and contained CO bridging sites absent in CeCe70. Isothermal CO adsorption measurements demonstrated a greater uptake of CO by CuCe70 as compared to CeCe70. The calculated energies for the formation of a single oxygen defect in the structure significantly decreased with the presence of Cu at the linkage site as opposed to Ce. This study revealed that atomic-level changes in the interfacial unit can change the reducibility, CO binding/uptake, and oxygen vacancy defect formation energetics in the MCe70 family to thus tune their catalytic activity.

5.
Chem Commun (Camb) ; 58(25): 4028-4031, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35254367

RESUMO

Metal-organic frameworks (MOFs) containing open metal sites are advantageous for wide applications. Here, carboxylate linkers are replaced with triazolate coordination in pre-formed Zn-MOF-74 via solvent-assisted linker exchange (SALE) to prepare the novel NU-250, within the known hexagonal channel-based MAF-X25 series that has not previously been synthesized de novo.


Assuntos
Estruturas Metalorgânicas , Zinco , Ácidos Carboxílicos , Metais
6.
Angew Chem Int Ed Engl ; 61(19): e202202207, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212125

RESUMO

The fabrication of MOF polymer composite materials enables the practical applications of MOF-based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low-loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid- and solid-state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8-fold enhancement in the protection against an ultra-toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF-based protective gear against nerve agents.


Assuntos
Estruturas Metalorgânicas , Agentes Neurotóxicos , Catálise , Celulose , Estruturas Metalorgânicas/química , Solventes
7.
Chem Soc Rev ; 51(3): 1045-1097, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35005751

RESUMO

A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.


Assuntos
Catálise , Íons , Conformação Molecular
8.
Chem Commun (Camb) ; 58(4): 525-528, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34908041

RESUMO

A rare three-dimensional catecholate-based Ce(III) metal-organic framework (MOF), denoted as NU-1701, has been synthesized and crystallographically characterized. Density functional theory calculations highlight various possible electronic transitions that may present in NU-1701. These transitions are competitive and indicate increased lanthanide character of Ce(III).

9.
J Am Chem Soc ; 143(49): 21056-21065, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34873904

RESUMO

Heterometallic CeIV/M oxo clusters are underexplored yet and can benefit from synergistic properties from combining cerium and other metal cations to produce efficient redox catalysts. Herein, we designed and synthesized a series of new Ce12V6 oxo clusters with different capping ligands: Ce12V6-SO4, Ce12V6-OTs (OTs: toluenesulfonic acid), and Ce12V6-NBSA (NBSA: nitrobenzenesulfonic acid). Single crystal X-ray diffraction (SCXRD) for all three structures reveals a Ce12V6 cubane core formulated [Ce12(VO)6O24]18+ with cerium on the edges of the cube, vanadyl capping the faces, and sulfate on the corners. While infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI-MS), and proton nuclear magnetic resonance (1H NMR) proved the successful coordination of the organic ligands to the Ce12V6 core, liquid phase 51V NMR and small-angle X-ray scattering (SAXS) confirmed the integrity of the clusters in the organic solutions. Furthermore, functionalization of the Ce12V6 core with organic ligands both provides increased solubility in term of homogeneous application and introduces porosity to the assemblies of Ce12V6-OTs and Ce12V6-NBSA in term of heterogeneous application, thus allowing more catalytic sites to be accessible and improving reactivity as compared to the nonporous and less soluble Ce12V6-SO4. Meanwhile, the coordinated ligands also influenced the electronic environment of the catalytic sites, in turn affecting the reactivity of the cluster, which we probed by the selective oxidation of 2-chloroethyl ethyl sulfide (CEES). This work provides a strategy to make full use of the catalytic sites within a class of inorganic sulfate capped clusters via organic ligand introduction.

10.
J Am Chem Soc ; 143(40): 16777-16785, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590851

RESUMO

The most recent global health crisis caused by the SARS-CoV-2 outbreak and the alarming use of chemical warfare agents highlight the necessity to produce efficient protective clothing and masks against biohazard and chemical threats. However, the development of a multifunctional protective textile is still behind to supply adequate protection for the public. To tackle this challenge, we designed multifunctional and regenerable N-chlorine based biocidal and detoxifying textiles using a robust zirconium metal-organic framework (MOF), UiO-66-NH2, as a chlorine carrier which can be easily coated on textile fibers. A chlorine bleaching converted the amine groups located on the MOF linker to active N-chlorine structures. The fibrous composite exhibited rapid biocidal activity against both Gram-negative bacteria (E. coli) and Gram-positive bacteria (S. aureus) with up to a 7 log reduction within 5 min for each strain as well as a 5 log reduction of SARS-CoV-2 within 15 min. Moreover, the active chlorine loaded MOF/fiber composite selectively and rapidly degraded sulfur mustard and its chemical simulant 2-chloroethyl ethyl sulfide (CEES) with half-lives less than 3 minutes. The versatile MOF-based fibrous composite designed here has the potential to serve as protective cloth against both biological and chemical threats.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Substâncias para a Guerra Química/química , Cloro/farmacologia , Estruturas Metalorgânicas/farmacologia , Roupa de Proteção , Animais , Antibacterianos/síntese química , Antivirais/síntese química , Linhagem Celular , Cloro/química , Escherichia coli/efeitos dos fármacos , Halogenação , Humanos , Estruturas Metalorgânicas/síntese química , Testes de Sensibilidade Microbiana , Gás de Mostarda/análogos & derivados , Gás de Mostarda/química , Oxirredução , SARS-CoV-2/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Têxteis , Zircônio/química
11.
Coord Chem Rev ; 4292021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33678810

RESUMO

Porphyrins are important molecules widely found in nature in the form of enzyme active sites and visible light absorption units. Recent interest in using these functional molecules as building blocks for the construction of metal-organic frameworks (MOFs) have rapidly increased due to the ease in which the locations of, and the distances between, the porphyrin units can be controlled in these porous crystalline materials. Porphyrin-based MOFs with atomically precise structures provide an ideal platform for the investigation of their structure-function relationships in the solid state without compromising accessibility to the inherent properties of the porphyrin building blocks. This review will provide a historical overview of the development and applications of porphyrin-based MOFs from early studies focused on design and structures, to recent efforts on their utilization in biomimetic catalysis, photocatalysis, electrocatalysis, sensing, and biomedical applications.

12.
ACS Catal ; 11(3): 1424-1429, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33614195

RESUMO

Metal-organic frameworks (MOFs) are excellent catalytic materials for the hydrolytic degradation of nerve agents and their simulants. However, most of the MOF-based hydrolysis catalysts to date are reliant on liquid water media buffered by a volatile liquid base. To overcome this practical limitation, we developed a simple and feasible strategy to synthesize MOF composites that structurally mimic phosphotriesterase's active site as well as its ligated histidine residues. By incorporating imidazole and its derivative into the pores of MOF-808, the obtained MOF composites achieved rapid degradation of a nerve agent simulant (dimethyl-4-nitrophenyl phosphate, DMNP) in pure water as well as in a humid environment without liquid base. Remarkably, one of the composites Im@MOF-808 displayed the highest catalytic activity for DMNP hydrolysis in unbuffered aqueous solutions among all reported MOF-based catalysts. Furthermore, solid-phase catalysis showed that Im@MOF-808 can also rapidly hydrolyze DMNP under high-humidity conditions without bulk water or external bases. This work provides a viable solution toward the implementation of MOF materials into protective equipment for practical nerve agent detoxification.

13.
J Am Chem Soc ; 143(3): 1503-1512, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33433209

RESUMO

Interpenetration of two or more sublattices is common among many metal-organic frameworks (MOFs). Herein, we study the evolution of one zirconium cluster-based, 3,8-connected MOF from its non-interpenetrated (NU-1200) to interpenetrated (STA-26) isomer. We observe this transient catenation process indirectly using ensemble methods, such as nitrogen porosimetry and X-ray diffraction, and directly, using high-resolution transmission electron microscopy. The approach detailed here will serve as a template for other researchers to monitor the interpenetration of their MOF samples at the bulk and single-particle limits. We investigate the mechanical stability of both lattices experimentally by pressurized in situ X-ray diffraction and nanoindentation as well as computationally with density functional theory calculations. Both lines of study reveal that STA-26 is considerably more mechanically stable than NU-1200. We conclude this study by demonstrating the potential of these MOFs and their mixed phases for the capture of gaseous n-hexane, used as a structural mimic for the chemical warfare agent sulfur mustard gas.

14.
Faraday Discuss ; 225: 9-69, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242050

RESUMO

As chemists and materials scientists, it is our duty to synthesize and utilize materials for a multitude of applications that promote the development of society and the well-being of its citizens. Since the inception of metal-organic frameworks (MOFs), researchers have proposed a variety of design strategies to rationally synthesize new MOF materials, studied their porosity and gas sorption performances, and integrated MOFs onto supports and into devices. Efforts have explored the relevance of MOFs for applications including, but not limited to, heterogeneous catalysis, guest delivery, water capture, destruction of nerve agents, gas storage, and separation. Recently, several start-up companies have undertaken MOF commercialization within industrial sectors. Herein, we provide a brief overview of the state of the MOF field from their design and synthesis to their potential applications, and finally, to their commercialization.

15.
J Am Chem Soc ; 142(41): 17224-17235, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32946693

RESUMO

Metal-organic frameworks (MOFs) are hybrid materials composed of metal ions and organic linkers featuring high porosity, crystallinity, and chemical tunability at multiple length scales. A recent advancement in transmission electron microscopy (TEM) and its direct application to MOF structure-property relationships have changed how we consider rational MOF design and development. Herein, we provide a perspective on TEM studies of MOFs and highlight the utilization of state-of-the-art TEM technologies to explore dynamic MOF processes and host-guest interactions. Additionally, we provide thoughts on what the future holds for TEM in the study of MOFs.

16.
Chem Rev ; 120(16): 8130-8160, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32207607

RESUMO

Materials capable of the safe and efficient capture or degradation of toxic chemicals, including chemical warfare agents (CWAs) and toxic industrial chemicals (TICs), are critically important in the modern age due to continuous threats of these chemicals to human life, both directly and indirectly. Metal-organic frameworks (MOFs), atomically precise hybrid materials that are synthesized via the self-assembly of metal cations or clusters and organic linkers, offer a unique solid adsorbent design platform due to their great synthetic versatility. This review will focus on recent advancements in MOF-based adsorbent design for protection against chemical warfare agents (organophosphorus nerve agents, blistering agents, and their simulants) and toxic industrial chemicals such as H2S, NH3, SO2, CO, NO2, and NO.


Assuntos
Estruturas Metalorgânicas/química , Substâncias Protetoras/química , Adsorção , Amônia/química , Amônia/isolamento & purificação , Monóxido de Carbono/química , Monóxido de Carbono/isolamento & purificação , Substâncias para a Guerra Química/química , Substâncias para a Guerra Química/isolamento & purificação , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/isolamento & purificação , Estruturas Metalorgânicas/síntese química , Óxido Nítrico/química , Óxido Nítrico/isolamento & purificação , Dióxido de Nitrogênio/química , Dióxido de Nitrogênio/isolamento & purificação , Substâncias Protetoras/síntese química , Dióxido de Enxofre/química , Dióxido de Enxofre/isolamento & purificação
17.
J Am Chem Soc ; 142(10): 4609-4615, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32069051

RESUMO

Zr6-based metal-organic frameworks (MOFs) with tetratopic organic linkers have been extensively investigated owing to their versatile structural tunability. While diverse topologies and polymorphism in the resulting MOFs are often encountered with tetratopic linkers and Zr6 nodes, reports on phase transitions within these systems are rare. Thus, we have a limited understanding of polymorph transformations, hindering the rational development of pure phase materials. In this study, a phase transition from a microporous MOF, scu-NU-906, to a mesoporous MOF, csq-NU-1008, was discovered and monitored through in situ variable temperature liquid-cell transmission electron microscopy (VT-LCTEM), high-resolution transmission electron microscopy (HRTEM), and in situ variable temperature powder X-ray diffraction (VT-PXRD). It was found that the microporous- to-mesoporous transformation in the presence of formic acid occurs via a concomitant dissolution-reprecipitation process.

18.
ACS Appl Mater Interfaces ; 11(45): 42179-42185, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31638371

RESUMO

The last decade has witnessed significant advances in the scale-up synthesis of metal-organic frameworks (MOFs) using commercially available and affordable organic linkers. However, the synthesis of MOFs using elongated and/or multitopic linkers to access MOFs with large pore volume and/or various topologies can often be challenging due to multistep organic syntheses involved for linker preparation. In this report, a modular MOF synthesis strategy is developed by utilizing the coordination and covalent bonds formation in one-pot strategy where monoacid-based ligands reacted to form ditopic ligands, which then assembled into a three-dimensional MOF with Zr6 clusters. Chemical stability of the resulting materials was significantly enhanced through converting the imine bond into robust linkage via cycloaddition with phenylacetylene. Oxygen storage capacities of the MOFs were measured, and enhanced volumetric O2 uptake was observed for the stabilized MOF, NU-401-Q.

19.
J Am Chem Soc ; 141(39): 15626-15633, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31532665

RESUMO

Organophosphonate-based nerve agents, such as VX, Sarin (GB), and Soman (GD), are among the most toxic chemicals to humankind. Recently, we have shown that Zr-based metal-organic frameworks (Zr-MOFs) can effectively catalyze the hydrolysis of these toxic chemicals for diminishing their toxicity. On the other hand, utilizing these materials in powder form is not practical, and developing scalable and economical processes for integrating these materials onto fibers is crucial for protective gear. Herein, we report a scalable, template-free, and aqueous solution-based synthesis strategy for the production of Zr-MOF-coated textiles. Among all MOF/fiber composites reported to date, the MOF-808/polyester fibers exhibit the highest rates of nerve agent hydrolysis. Moreover, such highly porous fiber composites display significantly higher protection time compared to that of its parent fabric for a mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES). A decreased diffusion rate of toxic chemicals through the MOF layer can provide time needed for the destruction of the harmful species.

20.
Chem Sci ; 10(4): 1186-1192, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30774917

RESUMO

Tetratopic organic linkers have been extensively used in Zr-based metal-organic frameworks (MOFs) where diverse topologies have been observed. Achieving meticulous control over the topologies to tune the pore sizes and shapes of the resulting materials, however, remains a great challenge. Herein, by introducing substituents to the backbone of tetratopic linkers to affect the linker conformation, phase-pure Zr-MOFs with different topologies and porosity were successfully obtained under the same synthetic conditions. The conversion of CO2 to valuable cyclic carbonates is a promising route for the mitigation of the greenhouse gas. Owing to the presence of substrate accessible Lewis acidic Zr(iv) sites in the 8-connected Zr6 nodes, the Zr-MOFs in this study have been investigated as heterogenous acid catalysts for CO2 cycloaddition to styrene oxide. The MOFs exhibited drastically different catalytic activities depending on their distinct pore structures. Compared to previously reported MOF materials, a superior catalytic activity was observed with the mesoporous NU-1008, giving an almost 100% conversion under mild conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...